形式化和实用化的可问责解密

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Rujia Li;Yuanzhao Li;Qin Wang;Sisi Duan;Qi Wang;Mark Ryan
{"title":"形式化和实用化的可问责解密","authors":"Rujia Li;Yuanzhao Li;Qin Wang;Sisi Duan;Qi Wang;Mark Ryan","doi":"10.1109/TIFS.2024.3515808","DOIUrl":null,"url":null,"abstract":"With the increasing scale and complexity of online activities, accountability, as an after-the-fact mechanism, has become an effective complementary approach to ensure system security. Decades of research have delved into the connotation of accountability. They fail, however, to achieve practical accountability of decryption. This paper seeks to address this gap. We consider the scenario where a client (called encryptor, her) encrypts her data and then chooses a delegate (a.k.a. decryptor, him) that stores data for her. If the decryptor initiates an illegitimate decryption on the encrypted data, there is a non-negligible probability that this behavior will be detected, thereby holding the decryptor accountable for his decryption. We make three contributions. First, we review key definitions of accountability known so far. Based on extensive investigations, we formalize new definitions of accountability specifically targeting the decryption process, denoted as accountable decryption, and discuss the (im)possibilities when capturing this concept. We also define the security goals in correspondence. Second, we present a novel Trusted Execution Environment(TEE)-assisted solution aligning with definitions. Instead of fully trusting TEE, we take a further step, making TEE work in the “trust, but verify” model where we trust TEE and use its service, but empower users (i.e., decryptors) to detect the potentially compromised state of TEEs. Third, we implement a full-fledged system and conduct a series of evaluations. The results demonstrate that our solution is efficient. Even in a scenario involving \n<inline-formula> <tex-math>$300,000$ </tex-math></inline-formula>\n log entries, the decryption process concludes in approximately 5.5ms, and malicious decryptors can be identified within 69ms.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"620-635"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accountable Decryption Made Formal and Practical\",\"authors\":\"Rujia Li;Yuanzhao Li;Qin Wang;Sisi Duan;Qi Wang;Mark Ryan\",\"doi\":\"10.1109/TIFS.2024.3515808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing scale and complexity of online activities, accountability, as an after-the-fact mechanism, has become an effective complementary approach to ensure system security. Decades of research have delved into the connotation of accountability. They fail, however, to achieve practical accountability of decryption. This paper seeks to address this gap. We consider the scenario where a client (called encryptor, her) encrypts her data and then chooses a delegate (a.k.a. decryptor, him) that stores data for her. If the decryptor initiates an illegitimate decryption on the encrypted data, there is a non-negligible probability that this behavior will be detected, thereby holding the decryptor accountable for his decryption. We make three contributions. First, we review key definitions of accountability known so far. Based on extensive investigations, we formalize new definitions of accountability specifically targeting the decryption process, denoted as accountable decryption, and discuss the (im)possibilities when capturing this concept. We also define the security goals in correspondence. Second, we present a novel Trusted Execution Environment(TEE)-assisted solution aligning with definitions. Instead of fully trusting TEE, we take a further step, making TEE work in the “trust, but verify” model where we trust TEE and use its service, but empower users (i.e., decryptors) to detect the potentially compromised state of TEEs. Third, we implement a full-fledged system and conduct a series of evaluations. The results demonstrate that our solution is efficient. Even in a scenario involving \\n<inline-formula> <tex-math>$300,000$ </tex-math></inline-formula>\\n log entries, the decryption process concludes in approximately 5.5ms, and malicious decryptors can be identified within 69ms.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"620-635\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10798458/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10798458/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accountable Decryption Made Formal and Practical
With the increasing scale and complexity of online activities, accountability, as an after-the-fact mechanism, has become an effective complementary approach to ensure system security. Decades of research have delved into the connotation of accountability. They fail, however, to achieve practical accountability of decryption. This paper seeks to address this gap. We consider the scenario where a client (called encryptor, her) encrypts her data and then chooses a delegate (a.k.a. decryptor, him) that stores data for her. If the decryptor initiates an illegitimate decryption on the encrypted data, there is a non-negligible probability that this behavior will be detected, thereby holding the decryptor accountable for his decryption. We make three contributions. First, we review key definitions of accountability known so far. Based on extensive investigations, we formalize new definitions of accountability specifically targeting the decryption process, denoted as accountable decryption, and discuss the (im)possibilities when capturing this concept. We also define the security goals in correspondence. Second, we present a novel Trusted Execution Environment(TEE)-assisted solution aligning with definitions. Instead of fully trusting TEE, we take a further step, making TEE work in the “trust, but verify” model where we trust TEE and use its service, but empower users (i.e., decryptors) to detect the potentially compromised state of TEEs. Third, we implement a full-fledged system and conduct a series of evaluations. The results demonstrate that our solution is efficient. Even in a scenario involving $300,000$ log entries, the decryption process concludes in approximately 5.5ms, and malicious decryptors can be identified within 69ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信