芳香族氨基酸代谢和主动转运调控与裂缝性页岩储层微生物持续性有关。

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2024-11-26 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae149
Chika Jude Ugwuodo, Fabrizio Colosimo, Jishnu Adhikari, Samuel O Purvine, Elizabeth K Eder, David W Hoyt, Stephanie A Wright, Mary S Lipton, Paula J Mouser
{"title":"芳香族氨基酸代谢和主动转运调控与裂缝性页岩储层微生物持续性有关。","authors":"Chika Jude Ugwuodo, Fabrizio Colosimo, Jishnu Adhikari, Samuel O Purvine, Elizabeth K Eder, David W Hoyt, Stephanie A Wright, Mary S Lipton, Paula J Mouser","doi":"10.1093/ismeco/ycae149","DOIUrl":null,"url":null,"abstract":"<p><p>Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium <i>Halanaerobium congolense</i> WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that <i>H. congolense</i> WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae149"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs.\",\"authors\":\"Chika Jude Ugwuodo, Fabrizio Colosimo, Jishnu Adhikari, Samuel O Purvine, Elizabeth K Eder, David W Hoyt, Stephanie A Wright, Mary S Lipton, Paula J Mouser\",\"doi\":\"10.1093/ismeco/ycae149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium <i>Halanaerobium congolense</i> WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that <i>H. congolense</i> WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"4 1\",\"pages\":\"ycae149\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水力压裂释放了大量被困在非常规页岩地层中的碳氢化合物。这种大规模的工程方法无意中将微生物引入了油气储层,使它们能够栖息在一个新的物理空间中,并在环境中独特的生物地球化学资源中茁壮成长。在这种极端的地下环境中,提高我们对微生物生长和生理的基本理解对于提高生物污染控制效果和最大限度地利用有益的自然资源至关重要。在这里,我们使用宏蛋白质组学和外代谢组学研究了模式细菌刚果蓝嗜氧菌WG10和富含页岩产流体的混合微生物群落对高盐度和极低储层流速(代谢应激)的适应的生化机制。我们还询问了该系统中生物膜形成的代谢基础,这是地下能量勘探的主要障碍。我们首次报道了刚果螺杆藻WG10积累酪氨酸用于渗透保护,这表明它具有灵活的耐受性,使其能够在裂缝性页岩环境中长期存在。我们还发现芳香氨基酸的合成和细胞壁的维持对生物膜的形成至关重要。最后,调节跨膜运输是页岩细菌在极低井流量下适应代谢应激的关键。这些结果提供了独特的见解,可以更好地管理水力压裂页岩系统,实现更高效和可持续的能源开采。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs.

Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信