加利福尼亚州与野火 PM2.5 相关的急诊就诊情况:不同个人和社区的风险不同。

Environmental research, health : ERH Pub Date : 2025-03-01 Epub Date: 2024-12-11 DOI:10.1088/2752-5309/ad976d
Jennifer D Stowell, Ian Sue Wing, Yasmin Romitti, Patrick L Kinney, Gregory A Wellenius
{"title":"加利福尼亚州与野火 PM2.5 相关的急诊就诊情况:不同个人和社区的风险不同。","authors":"Jennifer D Stowell, Ian Sue Wing, Yasmin Romitti, Patrick L Kinney, Gregory A Wellenius","doi":"10.1088/2752-5309/ad976d","DOIUrl":null,"url":null,"abstract":"<p><p>The threats to human health from wildfires and wildfire smoke (WFS) in the United States (US) are increasing due to continued climate change. A growing body of literature has documented important adverse health effects of WFS exposure, but there is insufficient evidence regarding how risk related to WFS exposure varies across individual or community level characteristics. To address this evidence gap, we utilized a large nationwide database of healthcare utilization claims for emergency department (ED) visits in California across multiple wildfire seasons (May through November, 2012-2019) and quantified the health impacts of fine particulate matter <2.5 <i>μ</i>m (PM<sub>2.5</sub>) air pollution attributable to WFS, overall and among subgroups of the population. We aggregated daily counts of ED visits to the level of the Zip Code Tabulation Area (ZCTA) and used a time-stratified case-crossover design and distributed lag non-linear models to estimate the association between WFS and relative risk of ED visits. We further assessed how the association with WFS varied across subgroups defined by age, race, social vulnerability, and residential air conditioning (AC) prevalence. Over a 7 day period, PM<sub>2.5</sub> from WFS was associated with elevated risk of ED visits for all causes (1.04% (0.32%, 1.71%)), non-accidental causes (2.93% (2.16%, 3.70%)), and respiratory disease (15.17% (12.86%, 17.52%)), but not with ED visits for cardiovascular diseases (1.06% (-1.88%, 4.08%)). Analysis across subgroups revealed potential differences in susceptibility by age, race, and AC prevalence, but not across subgroups defined by ZCTA-level Social Vulnerability Index scores. These results suggest that PM<sub>2.5</sub> from WFS is associated with higher rates of all cause, non-accidental, and respiratory ED visits with important heterogeneity across certain subgroups. Notably, lower availability of residential AC was associated with higher health risks related to wildfire activity.</p>","PeriodicalId":72938,"journal":{"name":"Environmental research, health : ERH","volume":"3 1","pages":"015002"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emergency department visits in California associated with wildfire PM<sub>2.5</sub>: differing risk across individuals and communities.\",\"authors\":\"Jennifer D Stowell, Ian Sue Wing, Yasmin Romitti, Patrick L Kinney, Gregory A Wellenius\",\"doi\":\"10.1088/2752-5309/ad976d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The threats to human health from wildfires and wildfire smoke (WFS) in the United States (US) are increasing due to continued climate change. A growing body of literature has documented important adverse health effects of WFS exposure, but there is insufficient evidence regarding how risk related to WFS exposure varies across individual or community level characteristics. To address this evidence gap, we utilized a large nationwide database of healthcare utilization claims for emergency department (ED) visits in California across multiple wildfire seasons (May through November, 2012-2019) and quantified the health impacts of fine particulate matter <2.5 <i>μ</i>m (PM<sub>2.5</sub>) air pollution attributable to WFS, overall and among subgroups of the population. We aggregated daily counts of ED visits to the level of the Zip Code Tabulation Area (ZCTA) and used a time-stratified case-crossover design and distributed lag non-linear models to estimate the association between WFS and relative risk of ED visits. We further assessed how the association with WFS varied across subgroups defined by age, race, social vulnerability, and residential air conditioning (AC) prevalence. Over a 7 day period, PM<sub>2.5</sub> from WFS was associated with elevated risk of ED visits for all causes (1.04% (0.32%, 1.71%)), non-accidental causes (2.93% (2.16%, 3.70%)), and respiratory disease (15.17% (12.86%, 17.52%)), but not with ED visits for cardiovascular diseases (1.06% (-1.88%, 4.08%)). Analysis across subgroups revealed potential differences in susceptibility by age, race, and AC prevalence, but not across subgroups defined by ZCTA-level Social Vulnerability Index scores. These results suggest that PM<sub>2.5</sub> from WFS is associated with higher rates of all cause, non-accidental, and respiratory ED visits with important heterogeneity across certain subgroups. Notably, lower availability of residential AC was associated with higher health risks related to wildfire activity.</p>\",\"PeriodicalId\":72938,\"journal\":{\"name\":\"Environmental research, health : ERH\",\"volume\":\"3 1\",\"pages\":\"015002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental research, health : ERH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5309/ad976d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental research, health : ERH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5309/ad976d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergency department visits in California associated with wildfire PM2.5: differing risk across individuals and communities.

The threats to human health from wildfires and wildfire smoke (WFS) in the United States (US) are increasing due to continued climate change. A growing body of literature has documented important adverse health effects of WFS exposure, but there is insufficient evidence regarding how risk related to WFS exposure varies across individual or community level characteristics. To address this evidence gap, we utilized a large nationwide database of healthcare utilization claims for emergency department (ED) visits in California across multiple wildfire seasons (May through November, 2012-2019) and quantified the health impacts of fine particulate matter <2.5 μm (PM2.5) air pollution attributable to WFS, overall and among subgroups of the population. We aggregated daily counts of ED visits to the level of the Zip Code Tabulation Area (ZCTA) and used a time-stratified case-crossover design and distributed lag non-linear models to estimate the association between WFS and relative risk of ED visits. We further assessed how the association with WFS varied across subgroups defined by age, race, social vulnerability, and residential air conditioning (AC) prevalence. Over a 7 day period, PM2.5 from WFS was associated with elevated risk of ED visits for all causes (1.04% (0.32%, 1.71%)), non-accidental causes (2.93% (2.16%, 3.70%)), and respiratory disease (15.17% (12.86%, 17.52%)), but not with ED visits for cardiovascular diseases (1.06% (-1.88%, 4.08%)). Analysis across subgroups revealed potential differences in susceptibility by age, race, and AC prevalence, but not across subgroups defined by ZCTA-level Social Vulnerability Index scores. These results suggest that PM2.5 from WFS is associated with higher rates of all cause, non-accidental, and respiratory ED visits with important heterogeneity across certain subgroups. Notably, lower availability of residential AC was associated with higher health risks related to wildfire activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信