人工智能在医疗点——边缘的可持续医疗革命。

Q2 Computer Science
Yousuf Rajput, Tarek Tarif, Akira Wolfe, Eric Dawson, Keolu Fox
{"title":"人工智能在医疗点——边缘的可持续医疗革命。","authors":"Yousuf Rajput, Tarek Tarif, Akira Wolfe, Eric Dawson, Keolu Fox","doi":"10.1142/9789819807024_0055","DOIUrl":null,"url":null,"abstract":"<p><p>This paper examines the integration of artificial intelligence (AI) in point-of-care testing (POCT) to enhance diagnostic speed, accuracy, and accessibility, particularly in underserved regions. AI-driven POCT is shown to optimize clinical decision-making, reduce diagnostic times, and offer personalized healthcare solutions, with applications in genome sequencing and infectious disease management. The paper highlights the environmental challenges of AI, including high energy consumption and electronic waste, and proposes solutions such as energy-efficient algorithms and edge computing. It also addresses ethical concerns, emphasizing the reduction of algorithmic bias and the need for equitable access to AI technologies. While AI in POCT can improve healthcare and promote sustainability, collaboration within the POCT ecosystem-among researchers, healthcare providers, and policymakers-is essential to overcome the ethical, environmental, and technological challenges.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"734-747"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI in Point-of-Care - A Sustainable Healthcare Revolution at the Edge.\",\"authors\":\"Yousuf Rajput, Tarek Tarif, Akira Wolfe, Eric Dawson, Keolu Fox\",\"doi\":\"10.1142/9789819807024_0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper examines the integration of artificial intelligence (AI) in point-of-care testing (POCT) to enhance diagnostic speed, accuracy, and accessibility, particularly in underserved regions. AI-driven POCT is shown to optimize clinical decision-making, reduce diagnostic times, and offer personalized healthcare solutions, with applications in genome sequencing and infectious disease management. The paper highlights the environmental challenges of AI, including high energy consumption and electronic waste, and proposes solutions such as energy-efficient algorithms and edge computing. It also addresses ethical concerns, emphasizing the reduction of algorithmic bias and the need for equitable access to AI technologies. While AI in POCT can improve healthcare and promote sustainability, collaboration within the POCT ecosystem-among researchers, healthcare providers, and policymakers-is essential to overcome the ethical, environmental, and technological challenges.</p>\",\"PeriodicalId\":34954,\"journal\":{\"name\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"volume\":\"30 \",\"pages\":\"734-747\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789819807024_0055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789819807024_0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了人工智能(AI)在护理点检测(POCT)中的集成,以提高诊断速度,准确性和可及性,特别是在服务不足的地区。人工智能驱动的POCT被证明可以优化临床决策,缩短诊断时间,并提供个性化的医疗保健解决方案,并在基因组测序和传染病管理中得到应用。该论文强调了人工智能的环境挑战,包括高能耗和电子垃圾,并提出了节能算法和边缘计算等解决方案。它还解决了伦理问题,强调减少算法偏见和公平获取人工智能技术的必要性。虽然POCT中的人工智能可以改善医疗保健并促进可持续性,但POCT生态系统内的合作——研究人员、医疗保健提供者和政策制定者之间的合作——对于克服伦理、环境和技术挑战至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI in Point-of-Care - A Sustainable Healthcare Revolution at the Edge.

This paper examines the integration of artificial intelligence (AI) in point-of-care testing (POCT) to enhance diagnostic speed, accuracy, and accessibility, particularly in underserved regions. AI-driven POCT is shown to optimize clinical decision-making, reduce diagnostic times, and offer personalized healthcare solutions, with applications in genome sequencing and infectious disease management. The paper highlights the environmental challenges of AI, including high energy consumption and electronic waste, and proposes solutions such as energy-efficient algorithms and edge computing. It also addresses ethical concerns, emphasizing the reduction of algorithmic bias and the need for equitable access to AI technologies. While AI in POCT can improve healthcare and promote sustainability, collaboration within the POCT ecosystem-among researchers, healthcare providers, and policymakers-is essential to overcome the ethical, environmental, and technological challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信