用于检测蛋白质-蛋白质相互作用的分裂内含素和分裂荧光素酶耦合系统。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhong Yao, Jiyoon Kim, Betty Geng, Jinkun Chen, Victoria Wong, Anna Lyakisheva, Jamie Snider, Marina Rudan Dimlić, Sanda Raić, Igor Stagljar
{"title":"用于检测蛋白质-蛋白质相互作用的分裂内含素和分裂荧光素酶耦合系统。","authors":"Zhong Yao, Jiyoon Kim, Betty Geng, Jinkun Chen, Victoria Wong, Anna Lyakisheva, Jamie Snider, Marina Rudan Dimlić, Sanda Raić, Igor Stagljar","doi":"10.1038/s44320-024-00081-2","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidation of protein-protein interactions (PPIs) represents one of the most important methods in biomedical research. Recently, PPIs have started to be exploited for drug discovery purposes and have thus attracted much attention from both the academic and pharmaceutical sectors. We previously developed a sensitive method, Split Intein-Mediated Protein Ligation (SIMPL), for detecting binary PPIs via irreversible splicing of the interacting proteins being investigated. Here, we incorporated tripart nanoluciferase (tNLuc) into the system, providing a luminescence signal which, in conjunction with homogenous liquid phase operation, improves the quantifiability and operability of the assay. Using a reference PPI set, we demonstrated an improvement in both sensitivity and specificity over the original SIMPL assay. Moreover, we designed the new SIMPL-tNLuc ('SIMPL2') platform with an inherent modularity allowing for flexible measurement of molecular modulators of target PPIs, including inhibitors, molecular glues and PROTACs. Our results demonstrate that SIMPL2 is a sensitive, cost- and labor-effective tool suitable for high-throughput screening (HTS) in both PPI mapping and drug discovery applications.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A split intein and split luciferase-coupled system for detecting protein-protein interactions.\",\"authors\":\"Zhong Yao, Jiyoon Kim, Betty Geng, Jinkun Chen, Victoria Wong, Anna Lyakisheva, Jamie Snider, Marina Rudan Dimlić, Sanda Raić, Igor Stagljar\",\"doi\":\"10.1038/s44320-024-00081-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elucidation of protein-protein interactions (PPIs) represents one of the most important methods in biomedical research. Recently, PPIs have started to be exploited for drug discovery purposes and have thus attracted much attention from both the academic and pharmaceutical sectors. We previously developed a sensitive method, Split Intein-Mediated Protein Ligation (SIMPL), for detecting binary PPIs via irreversible splicing of the interacting proteins being investigated. Here, we incorporated tripart nanoluciferase (tNLuc) into the system, providing a luminescence signal which, in conjunction with homogenous liquid phase operation, improves the quantifiability and operability of the assay. Using a reference PPI set, we demonstrated an improvement in both sensitivity and specificity over the original SIMPL assay. Moreover, we designed the new SIMPL-tNLuc ('SIMPL2') platform with an inherent modularity allowing for flexible measurement of molecular modulators of target PPIs, including inhibitors, molecular glues and PROTACs. Our results demonstrate that SIMPL2 is a sensitive, cost- and labor-effective tool suitable for high-throughput screening (HTS) in both PPI mapping and drug discovery applications.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-024-00081-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00081-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阐明蛋白质-蛋白质相互作用(PPIs)是生物医学研究中最重要的方法之一。最近,PPIs 开始被用于药物发现目的,因此引起了学术界和制药界的广泛关注。我们之前开发了一种灵敏的方法--分裂茵介导的蛋白质连接(SIMPL),通过对被研究的相互作用蛋白质进行不可逆拼接来检测二元 PPIs。在这里,我们将三art 纳米荧光素酶(tNLuc)纳入该系统,提供发光信号,结合均相液相操作,提高了检测的可量化性和可操作性。通过使用一组参考 PPI,我们证明该方法的灵敏度和特异性都比原来的 SIMPL 检测方法有所提高。此外,我们设计的新 SIMPL-tNLuc ("SIMPL2")平台具有固有的模块化特性,可灵活测量目标 PPI 的分子调节剂,包括抑制剂、分子胶和 PROTAC。我们的研究结果表明,SIMPL2 是一种灵敏度高、成本低且省力的工具,适用于 PPI 图谱绘制和药物发现应用中的高通量筛选 (HTS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A split intein and split luciferase-coupled system for detecting protein-protein interactions.

Elucidation of protein-protein interactions (PPIs) represents one of the most important methods in biomedical research. Recently, PPIs have started to be exploited for drug discovery purposes and have thus attracted much attention from both the academic and pharmaceutical sectors. We previously developed a sensitive method, Split Intein-Mediated Protein Ligation (SIMPL), for detecting binary PPIs via irreversible splicing of the interacting proteins being investigated. Here, we incorporated tripart nanoluciferase (tNLuc) into the system, providing a luminescence signal which, in conjunction with homogenous liquid phase operation, improves the quantifiability and operability of the assay. Using a reference PPI set, we demonstrated an improvement in both sensitivity and specificity over the original SIMPL assay. Moreover, we designed the new SIMPL-tNLuc ('SIMPL2') platform with an inherent modularity allowing for flexible measurement of molecular modulators of target PPIs, including inhibitors, molecular glues and PROTACs. Our results demonstrate that SIMPL2 is a sensitive, cost- and labor-effective tool suitable for high-throughput screening (HTS) in both PPI mapping and drug discovery applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信