Gcn2 可在热应激过程中,在 C. neoformans 缺乏 Hog1/p38 信号传导的情况下挽救重编程。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2024-12-13 DOI:10.1128/mbio.01762-24
David Goich, Amanda L M Bloom, Sean R Duffy, Maritza N Ventura, John C Panepinto
{"title":"Gcn2 可在热应激过程中,在 C. neoformans 缺乏 Hog1/p38 信号传导的情况下挽救重编程。","authors":"David Goich, Amanda L M Bloom, Sean R Duffy, Maritza N Ventura, John C Panepinto","doi":"10.1128/mbio.01762-24","DOIUrl":null,"url":null,"abstract":"<p><p>The fungus <i>Cryptococcus neoformans</i> is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation <i>via</i> crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, <i>Candida albicans</i>. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCE<i>Cryptococcus neoformans</i> is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs <i>via</i> the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0176224"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in <i>C. neoformans</i> during thermal stress.\",\"authors\":\"David Goich, Amanda L M Bloom, Sean R Duffy, Maritza N Ventura, John C Panepinto\",\"doi\":\"10.1128/mbio.01762-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fungus <i>Cryptococcus neoformans</i> is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation <i>via</i> crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, <i>Candida albicans</i>. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCE<i>Cryptococcus neoformans</i> is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs <i>via</i> the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0176224\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.01762-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.01762-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress.

The fungus Cryptococcus neoformans is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCECryptococcus neoformans is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs via the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信