非诺贝特在胶质母细胞瘤细胞中的放射增敏能力取决于脂质代谢。

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bayan Alkotub , Lisa Bauer , Ali Bashiri Dezfouli , Khouloud Hachani , Vasilis Ntziachristos , Gabriele Multhoff , Morteza Hasanzadeh Kafshgari
{"title":"非诺贝特在胶质母细胞瘤细胞中的放射增敏能力取决于脂质代谢。","authors":"Bayan Alkotub ,&nbsp;Lisa Bauer ,&nbsp;Ali Bashiri Dezfouli ,&nbsp;Khouloud Hachani ,&nbsp;Vasilis Ntziachristos ,&nbsp;Gabriele Multhoff ,&nbsp;Morteza Hasanzadeh Kafshgari","doi":"10.1016/j.redox.2024.103452","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time &lt;2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18). Interestingly, FF (50 μM) significantly radiosensitizes U87 cells by inducing DNA double-strand breaks through oxidative stress and impairing mitochondrial membrane integrity, but radioprotects LN18 cells by reducing the production of reactive oxygen species (ROS) and stabilizing the mitochondrial membrane potential. A comparative protein and lipid analysis revealed striking differences in the two GBM cell lines: LN18 cells exhibited a significantly higher membrane expression density of the fatty acid (FA) cluster protein transporter CD36 than U87 cells, a higher expression of glycerol-3-phosphate acyltransferase 4 (GPAT4) which supports the production of large lipid droplets (LDs), and a lower expression of diacylglycerol O-acyltransferase 1 (DGAT1) which regulates the formation of small LDs. Consequently, large LDs are predominantly found in LN18 cells, whereas small LDs are found in U87 cells. After a combined treatment of FF and irradiation, the number of large LDs significantly increased in radioresistant LN18 cells, whereas the number of small LDs decreased in radiosensitive U87 cells. The radioprotective effect of FF in LN18 cells could be associated with the presence of large LDs, which act as a sink for the lipophilic drug FF. To prevent uptake of FF by large LDs and to ameliorate its function as a radiosensitizer, FF was encapsulated in biomimetic cell membrane extracellular lipid vesicles (CmEVs) which alter the intracellular trafficking of the drug. In contrast to the free drug, CmEV-encapsulated FF was predominantly enriched in the lysosomal compartment, causing necrosis by impairing lysosomal membrane integrity. Since the stability of plasma and lysosomal membranes is maintained by the presence of the stress-inducible heat shock protein 70 (Hsp70) which has a strong affinity to tumor-specific glycosphingolipids, necrosis occurs predominantly in LN18 cells having a lower membrane Hsp70 expression density than U87 cells.</div><div>In summary, our findings indicate that the lipid metabolism of tumor cells can affect the radiosensitizing capacity of FF when encountered either as a free drug or as a drug loaded in biomimetic lipid vesicles.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"Article 103452"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697781/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism\",\"authors\":\"Bayan Alkotub ,&nbsp;Lisa Bauer ,&nbsp;Ali Bashiri Dezfouli ,&nbsp;Khouloud Hachani ,&nbsp;Vasilis Ntziachristos ,&nbsp;Gabriele Multhoff ,&nbsp;Morteza Hasanzadeh Kafshgari\",\"doi\":\"10.1016/j.redox.2024.103452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time &lt;2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18). Interestingly, FF (50 μM) significantly radiosensitizes U87 cells by inducing DNA double-strand breaks through oxidative stress and impairing mitochondrial membrane integrity, but radioprotects LN18 cells by reducing the production of reactive oxygen species (ROS) and stabilizing the mitochondrial membrane potential. A comparative protein and lipid analysis revealed striking differences in the two GBM cell lines: LN18 cells exhibited a significantly higher membrane expression density of the fatty acid (FA) cluster protein transporter CD36 than U87 cells, a higher expression of glycerol-3-phosphate acyltransferase 4 (GPAT4) which supports the production of large lipid droplets (LDs), and a lower expression of diacylglycerol O-acyltransferase 1 (DGAT1) which regulates the formation of small LDs. Consequently, large LDs are predominantly found in LN18 cells, whereas small LDs are found in U87 cells. After a combined treatment of FF and irradiation, the number of large LDs significantly increased in radioresistant LN18 cells, whereas the number of small LDs decreased in radiosensitive U87 cells. The radioprotective effect of FF in LN18 cells could be associated with the presence of large LDs, which act as a sink for the lipophilic drug FF. To prevent uptake of FF by large LDs and to ameliorate its function as a radiosensitizer, FF was encapsulated in biomimetic cell membrane extracellular lipid vesicles (CmEVs) which alter the intracellular trafficking of the drug. In contrast to the free drug, CmEV-encapsulated FF was predominantly enriched in the lysosomal compartment, causing necrosis by impairing lysosomal membrane integrity. Since the stability of plasma and lysosomal membranes is maintained by the presence of the stress-inducible heat shock protein 70 (Hsp70) which has a strong affinity to tumor-specific glycosphingolipids, necrosis occurs predominantly in LN18 cells having a lower membrane Hsp70 expression density than U87 cells.</div><div>In summary, our findings indicate that the lipid metabolism of tumor cells can affect the radiosensitizing capacity of FF when encountered either as a free drug or as a drug loaded in biomimetic lipid vesicles.</div></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"79 \",\"pages\":\"Article 103452\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724004300\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724004300","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管切除、化疗和放疗等多模式治疗方法取得了进展,但4级胶质母细胞瘤(GBM)患者的总生存期仍然极低(平均生存时间)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism

Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism
Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18). Interestingly, FF (50 μM) significantly radiosensitizes U87 cells by inducing DNA double-strand breaks through oxidative stress and impairing mitochondrial membrane integrity, but radioprotects LN18 cells by reducing the production of reactive oxygen species (ROS) and stabilizing the mitochondrial membrane potential. A comparative protein and lipid analysis revealed striking differences in the two GBM cell lines: LN18 cells exhibited a significantly higher membrane expression density of the fatty acid (FA) cluster protein transporter CD36 than U87 cells, a higher expression of glycerol-3-phosphate acyltransferase 4 (GPAT4) which supports the production of large lipid droplets (LDs), and a lower expression of diacylglycerol O-acyltransferase 1 (DGAT1) which regulates the formation of small LDs. Consequently, large LDs are predominantly found in LN18 cells, whereas small LDs are found in U87 cells. After a combined treatment of FF and irradiation, the number of large LDs significantly increased in radioresistant LN18 cells, whereas the number of small LDs decreased in radiosensitive U87 cells. The radioprotective effect of FF in LN18 cells could be associated with the presence of large LDs, which act as a sink for the lipophilic drug FF. To prevent uptake of FF by large LDs and to ameliorate its function as a radiosensitizer, FF was encapsulated in biomimetic cell membrane extracellular lipid vesicles (CmEVs) which alter the intracellular trafficking of the drug. In contrast to the free drug, CmEV-encapsulated FF was predominantly enriched in the lysosomal compartment, causing necrosis by impairing lysosomal membrane integrity. Since the stability of plasma and lysosomal membranes is maintained by the presence of the stress-inducible heat shock protein 70 (Hsp70) which has a strong affinity to tumor-specific glycosphingolipids, necrosis occurs predominantly in LN18 cells having a lower membrane Hsp70 expression density than U87 cells.
In summary, our findings indicate that the lipid metabolism of tumor cells can affect the radiosensitizing capacity of FF when encountered either as a free drug or as a drug loaded in biomimetic lipid vesicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信