Xiang Chen, Yibing Ma, Yongle Shi, Bai Zhang, Hanwen Wu, Jie Gao
{"title":"基于模糊识别的过渡细胞推断单细胞转录组学的细胞轨迹。","authors":"Xiang Chen, Yibing Ma, Yongle Shi, Bai Zhang, Hanwen Wu, Jie Gao","doi":"10.1089/cmb.2023.0432","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable insights into understanding cell cycle and differentiation. During cell development, cells exhibit both stable and transition states, which makes it challenging to accurately identify these cells. To address this challenge, we propose a novel single-cell trajectory inference method using fuzzy clustering, named scFCTI. By introducing fuzzy clustering and quantifying cell uncertainty, scFCTI can identify transition cells within unstable cell states. Moreover, scFCTI can obtain refined cell classification by characterizing different cell stages, which gain more accurate single-cell trajectory reconstruction containing transition paths. To validate the effectiveness of scFCTI, we conduct experiments on five real datasets and four different structure simulation datasets, comparing them with several state-of-the-art trajectory inference methods. The results demonstrate that scFCTI outperforms these methods by successfully identifying unstable cell clusters and obtaining more accurate cell paths with transition states. Especially the experimental results demonstrate that scFCTI can reconstruct the cell trajectory more precisely.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy-Based Identification of Transition Cells to Infer Cell Trajectory for Single-Cell Transcriptomics.\",\"authors\":\"Xiang Chen, Yibing Ma, Yongle Shi, Bai Zhang, Hanwen Wu, Jie Gao\",\"doi\":\"10.1089/cmb.2023.0432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable insights into understanding cell cycle and differentiation. During cell development, cells exhibit both stable and transition states, which makes it challenging to accurately identify these cells. To address this challenge, we propose a novel single-cell trajectory inference method using fuzzy clustering, named scFCTI. By introducing fuzzy clustering and quantifying cell uncertainty, scFCTI can identify transition cells within unstable cell states. Moreover, scFCTI can obtain refined cell classification by characterizing different cell stages, which gain more accurate single-cell trajectory reconstruction containing transition paths. To validate the effectiveness of scFCTI, we conduct experiments on five real datasets and four different structure simulation datasets, comparing them with several state-of-the-art trajectory inference methods. The results demonstrate that scFCTI outperforms these methods by successfully identifying unstable cell clusters and obtaining more accurate cell paths with transition states. Especially the experimental results demonstrate that scFCTI can reconstruct the cell trajectory more precisely.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0432\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0432","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fuzzy-Based Identification of Transition Cells to Infer Cell Trajectory for Single-Cell Transcriptomics.
With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable insights into understanding cell cycle and differentiation. During cell development, cells exhibit both stable and transition states, which makes it challenging to accurately identify these cells. To address this challenge, we propose a novel single-cell trajectory inference method using fuzzy clustering, named scFCTI. By introducing fuzzy clustering and quantifying cell uncertainty, scFCTI can identify transition cells within unstable cell states. Moreover, scFCTI can obtain refined cell classification by characterizing different cell stages, which gain more accurate single-cell trajectory reconstruction containing transition paths. To validate the effectiveness of scFCTI, we conduct experiments on five real datasets and four different structure simulation datasets, comparing them with several state-of-the-art trajectory inference methods. The results demonstrate that scFCTI outperforms these methods by successfully identifying unstable cell clusters and obtaining more accurate cell paths with transition states. Especially the experimental results demonstrate that scFCTI can reconstruct the cell trajectory more precisely.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases