Guangyu Fan, Liyuan Dai, Tongji Xie, Lin Li, Le Tang, Xiaohong Han, Yuankai Shi
{"title":"空间分析显示,CXCL5和SLC6A14是肝内胆管癌微血管侵犯的标志物。","authors":"Guangyu Fan, Liyuan Dai, Tongji Xie, Lin Li, Le Tang, Xiaohong Han, Yuankai Shi","doi":"10.1097/HC9.0000000000000597","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood.</p><p><strong>Methods: </strong>We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated.</p><p><strong>Results: </strong>MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment.</p><p><strong>Conclusions: </strong>This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma.\",\"authors\":\"Guangyu Fan, Liyuan Dai, Tongji Xie, Lin Li, Le Tang, Xiaohong Han, Yuankai Shi\",\"doi\":\"10.1097/HC9.0000000000000597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood.</p><p><strong>Methods: </strong>We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated.</p><p><strong>Results: </strong>MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment.</p><p><strong>Conclusions: </strong>This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.</p>\",\"PeriodicalId\":12978,\"journal\":{\"name\":\"Hepatology Communications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hepatology Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HC9.0000000000000597\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000597","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma.
Background: Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood.
Methods: We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated.
Results: MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment.
Conclusions: This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.
期刊介绍:
Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction.