MYO1F通过促进GAPDH乙酰化调节t细胞活化和糖酵解代谢。

IF 21.8 1区 医学 Q1 IMMUNOLOGY
Zhihui Cui, Heping Wang, Xiong Feng, Chuyu Wu, Ming Yi, Ruirui He, Ting Pan, Ru Gao, Lingyun Feng, Bo Zeng, Guoling Huang, Yuan Wang, Yanyun Du, Cun-jin Zhang, Xue Xiao, Chenhui Wang
{"title":"MYO1F通过促进GAPDH乙酰化调节t细胞活化和糖酵解代谢。","authors":"Zhihui Cui, Heping Wang, Xiong Feng, Chuyu Wu, Ming Yi, Ruirui He, Ting Pan, Ru Gao, Lingyun Feng, Bo Zeng, Guoling Huang, Yuan Wang, Yanyun Du, Cun-jin Zhang, Xue Xiao, Chenhui Wang","doi":"10.1038/s41423-024-01247-6","DOIUrl":null,"url":null,"abstract":"Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"22 2","pages":"176-190"},"PeriodicalIF":21.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH\",\"authors\":\"Zhihui Cui, Heping Wang, Xiong Feng, Chuyu Wu, Ming Yi, Ruirui He, Ting Pan, Ru Gao, Lingyun Feng, Bo Zeng, Guoling Huang, Yuan Wang, Yanyun Du, Cun-jin Zhang, Xue Xiao, Chenhui Wang\",\"doi\":\"10.1038/s41423-024-01247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.\",\"PeriodicalId\":9950,\"journal\":{\"name\":\"Cellular &Molecular Immunology\",\"volume\":\"22 2\",\"pages\":\"176-190\"},\"PeriodicalIF\":21.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular &Molecular Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41423-024-01247-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41423-024-01247-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

适当的细胞代谢在T细胞是生产免疫反应的关键。然而,当受到内在或外在代谢因素的失调时,T细胞可能导致广泛的疾病,如癌症和自身免疫性疾病。然而,T细胞的代谢调控仍不完全清楚。在这里,我们表明MYO1F是TCR刺激后人类和小鼠t细胞激活所必需的,并且t细胞特异性MYO1F敲除小鼠由于体内t细胞激活受损而表现出肿瘤负担增加和EAE严重程度减轻。从机制上讲,在TCR刺激后,MYO1F在607和634酪氨酸位点被LCK磷酸化,这对于乙酰转移酶α-TAT1介导的甘油醛-3-磷酸脱氢酶(GAPDH)在Lys84、86和227位点的乙酰化至关重要,这些过程对于MYO1F的活化、细胞糖酵解以及T细胞的效应功能至关重要。重要的是,我们发现复发性外周t细胞淋巴瘤(PTCL)相关的致癌蛋白VAV1-MYO1F的融合蛋白可促进GAPDH的超乙酰化及其激活,从而导致异常的糖酵解和t细胞增殖,抑制GAPDH活性可显著限制t细胞的激活和增殖,并延长hVAV1-MYO1F敲入小鼠的存活时间。此外,在含有VAV1-MYO1F基因融合的人类PTCL患者样本中证实了GAPDH的超乙酰化。总的来说,本研究不仅揭示了MYO1F调节t细胞代谢和VAV1-MYO1F融合诱导PTCL的机制,而且还揭示了PTCL治疗的有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH

MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH
Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
31.20
自引率
1.20%
发文量
903
审稿时长
1 months
期刊介绍: Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信