探索基于大型语言模型的聊天机器人在应对核糖体剖析数据分析挑战方面的潜力:综述。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zheyu Ding, Rong Wei, Jianing Xia, Yonghao Mu, Jiahuan Wang, Yingying Lin
{"title":"探索基于大型语言模型的聊天机器人在应对核糖体剖析数据分析挑战方面的潜力:综述。","authors":"Zheyu Ding, Rong Wei, Jianing Xia, Yonghao Mu, Jiahuan Wang, Yingying Lin","doi":"10.1093/bib/bbae641","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosome profiling (Ribo-seq) provides transcriptome-wide insights into protein synthesis dynamics, yet its analysis poses challenges, particularly for nonbioinformatics researchers. Large language model-based chatbots offer promising solutions by leveraging natural language processing. This review explores their convergence, highlighting opportunities for synergy. We discuss challenges in Ribo-seq analysis and how chatbots mitigate them, facilitating scientific discovery. Through case studies, we illustrate chatbots' potential contributions, including data analysis and result interpretation. Despite the absence of applied examples, existing software underscores the value of chatbots and the large language model. We anticipate their pivotal role in future Ribo-seq analysis, overcoming limitations. Challenges such as model bias and data privacy require attention, but emerging trends offer promise. The integration of large language models and Ribo-seq analysis holds immense potential for advancing translational regulation and gene expression understanding.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638007/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of large language model-based chatbots in challenges of ribosome profiling data analysis: a review.\",\"authors\":\"Zheyu Ding, Rong Wei, Jianing Xia, Yonghao Mu, Jiahuan Wang, Yingying Lin\",\"doi\":\"10.1093/bib/bbae641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribosome profiling (Ribo-seq) provides transcriptome-wide insights into protein synthesis dynamics, yet its analysis poses challenges, particularly for nonbioinformatics researchers. Large language model-based chatbots offer promising solutions by leveraging natural language processing. This review explores their convergence, highlighting opportunities for synergy. We discuss challenges in Ribo-seq analysis and how chatbots mitigate them, facilitating scientific discovery. Through case studies, we illustrate chatbots' potential contributions, including data analysis and result interpretation. Despite the absence of applied examples, existing software underscores the value of chatbots and the large language model. We anticipate their pivotal role in future Ribo-seq analysis, overcoming limitations. Challenges such as model bias and data privacy require attention, but emerging trends offer promise. The integration of large language models and Ribo-seq analysis holds immense potential for advancing translational regulation and gene expression understanding.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae641\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae641","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

核糖体分析(Ribo-seq)提供了对蛋白质合成动态的全转录组洞察,但其分析带来了挑战,尤其是对非生物信息学研究人员而言。基于大语言模型的聊天机器人利用自然语言处理技术提供了有前景的解决方案。本综述探讨了两者的融合,强调了协同作用的机会。我们讨论了核糖序列分析中的挑战以及聊天机器人如何缓解这些挑战,从而促进科学发现。通过案例研究,我们说明了聊天机器人的潜在贡献,包括数据分析和结果解释。尽管缺乏应用实例,但现有软件强调了聊天机器人和大型语言模型的价值。我们预计聊天机器人将在未来的核糖序列分析中发挥关键作用,克服局限性。模型偏差和数据隐私等挑战需要关注,但新出现的趋势为我们带来了希望。大型语言模型与 Ribo-seq 分析的整合在促进转化调控和基因表达理解方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the potential of large language model-based chatbots in challenges of ribosome profiling data analysis: a review.

Ribosome profiling (Ribo-seq) provides transcriptome-wide insights into protein synthesis dynamics, yet its analysis poses challenges, particularly for nonbioinformatics researchers. Large language model-based chatbots offer promising solutions by leveraging natural language processing. This review explores their convergence, highlighting opportunities for synergy. We discuss challenges in Ribo-seq analysis and how chatbots mitigate them, facilitating scientific discovery. Through case studies, we illustrate chatbots' potential contributions, including data analysis and result interpretation. Despite the absence of applied examples, existing software underscores the value of chatbots and the large language model. We anticipate their pivotal role in future Ribo-seq analysis, overcoming limitations. Challenges such as model bias and data privacy require attention, but emerging trends offer promise. The integration of large language models and Ribo-seq analysis holds immense potential for advancing translational regulation and gene expression understanding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信