用19F核磁共振谱表征Y224在ftmox1催化中的构象柔韧性。

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xinye Wang , Lingyun Yang , Shenlin Wang , Jun Wang , Kelin Li , Nathchar Naowarojna , Yi Ju , Ke Ye , Yuchen Han , Wupeng Yan , Xueting Liu , Lixin Zhang , Pinghua Liu
{"title":"用19F核磁共振谱表征Y224在ftmox1催化中的构象柔韧性。","authors":"Xinye Wang ,&nbsp;Lingyun Yang ,&nbsp;Shenlin Wang ,&nbsp;Jun Wang ,&nbsp;Kelin Li ,&nbsp;Nathchar Naowarojna ,&nbsp;Yi Ju ,&nbsp;Ke Ye ,&nbsp;Yuchen Han ,&nbsp;Wupeng Yan ,&nbsp;Xueting Liu ,&nbsp;Lixin Zhang ,&nbsp;Pinghua Liu","doi":"10.1039/d4cy01077a","DOIUrl":null,"url":null,"abstract":"<div><div>α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced <em>via</em> the amber codon suppression method, we conducted <sup>19</sup>F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1–substrate complexes influence their catalytic activities. These findings underscore the utility of <sup>19</sup>F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 2","pages":"Pages 386-395"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy†\",\"authors\":\"Xinye Wang ,&nbsp;Lingyun Yang ,&nbsp;Shenlin Wang ,&nbsp;Jun Wang ,&nbsp;Kelin Li ,&nbsp;Nathchar Naowarojna ,&nbsp;Yi Ju ,&nbsp;Ke Ye ,&nbsp;Yuchen Han ,&nbsp;Wupeng Yan ,&nbsp;Xueting Liu ,&nbsp;Lixin Zhang ,&nbsp;Pinghua Liu\",\"doi\":\"10.1039/d4cy01077a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced <em>via</em> the amber codon suppression method, we conducted <sup>19</sup>F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1–substrate complexes influence their catalytic activities. These findings underscore the utility of <sup>19</sup>F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 2\",\"pages\":\"Pages 386-395\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324006415\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324006415","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

α-酮戊二酸依赖性非血红素铁(αKG-NHFe)酶在天然产物的生物合成中起着至关重要的作用,在某些情况下表现出多功能的催化能力。本研究的重点是αKG-NHFe酶FtmOx1,该酶在疣状菌生物合成中催化内过氧化、脱烷基和醇氧化反应。我们探索了一个假设,即活性位点Y224的构象动力学赋予了ftmox1催化的多功能活性。利用琥珀色密码子抑制法生成的y224 -3,5-二氟酪氨酸取代的FtmOx1,我们进行了19F NMR表征来研究FtmOx1的结构灵活性。随后的生化和x射线晶体学分析提供了ftmox1 -底物配合物的特定构象如何影响其催化活性的见解。这些发现强调了19F NMR作为阐明多功能酶复杂机制的强大工具的实用性,为开发生物催化过程以生产利用其独特催化性能的新型治疗剂提供了潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy†

Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy†
α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced via the amber codon suppression method, we conducted 19F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1–substrate complexes influence their catalytic activities. These findings underscore the utility of 19F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信