{"title":"通过高分辨率电子显微镜揭示手性无机纳米晶体的生长机制","authors":"Chaoyang Chu, Yao Wang, Yanhang Ma","doi":"10.1021/jacs.4c13478","DOIUrl":null,"url":null,"abstract":"Chiral inorganic nanomaterials have attracted broad interest due to their intriguing chirality-dependent performances. However, there is a lack of experimental studies and atomic-level evidence on their growth mechanism. Herein, high-crystalline chiral tellurium nanowires were synthesized in an alkali solution by using tellurium oxide as an inorganic source and hydrazine hydrate as a reductant. The evolution of the nucleus and crystalline domains was manifested using high-resolution electron microscopy and electron diffraction, demonstrating a nonclassical growth path, that is, from monomers to nanowires of clusters and then nanocrystals. Furthermore, chiral inducers, <span>d</span>/<span>l</span>-penicillamine, were used at different stages to study their effects on the bias of two enantiomorphic structures with different chiral space groups. A similar nonclassical growth mechanism was also found in the synthesis of chiral terbium phosphate nanowires, demonstrating a common growth phenomenon in chiral inorganic nanomaterials. This work provides novel insights into the formation of chiral nanomaterials, benefiting the further controllable synthesis of various chiral nanomaterials.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"226 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Growth Mechanism of Chiral Inorganic Nanocrystals via High-Resolution Electron Microscopy\",\"authors\":\"Chaoyang Chu, Yao Wang, Yanhang Ma\",\"doi\":\"10.1021/jacs.4c13478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral inorganic nanomaterials have attracted broad interest due to their intriguing chirality-dependent performances. However, there is a lack of experimental studies and atomic-level evidence on their growth mechanism. Herein, high-crystalline chiral tellurium nanowires were synthesized in an alkali solution by using tellurium oxide as an inorganic source and hydrazine hydrate as a reductant. The evolution of the nucleus and crystalline domains was manifested using high-resolution electron microscopy and electron diffraction, demonstrating a nonclassical growth path, that is, from monomers to nanowires of clusters and then nanocrystals. Furthermore, chiral inducers, <span>d</span>/<span>l</span>-penicillamine, were used at different stages to study their effects on the bias of two enantiomorphic structures with different chiral space groups. A similar nonclassical growth mechanism was also found in the synthesis of chiral terbium phosphate nanowires, demonstrating a common growth phenomenon in chiral inorganic nanomaterials. This work provides novel insights into the formation of chiral nanomaterials, benefiting the further controllable synthesis of various chiral nanomaterials.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"226 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c13478\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unraveling the Growth Mechanism of Chiral Inorganic Nanocrystals via High-Resolution Electron Microscopy
Chiral inorganic nanomaterials have attracted broad interest due to their intriguing chirality-dependent performances. However, there is a lack of experimental studies and atomic-level evidence on their growth mechanism. Herein, high-crystalline chiral tellurium nanowires were synthesized in an alkali solution by using tellurium oxide as an inorganic source and hydrazine hydrate as a reductant. The evolution of the nucleus and crystalline domains was manifested using high-resolution electron microscopy and electron diffraction, demonstrating a nonclassical growth path, that is, from monomers to nanowires of clusters and then nanocrystals. Furthermore, chiral inducers, d/l-penicillamine, were used at different stages to study their effects on the bias of two enantiomorphic structures with different chiral space groups. A similar nonclassical growth mechanism was also found in the synthesis of chiral terbium phosphate nanowires, demonstrating a common growth phenomenon in chiral inorganic nanomaterials. This work provides novel insights into the formation of chiral nanomaterials, benefiting the further controllable synthesis of various chiral nanomaterials.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.