{"title":"提高鲁棒公平性的硬对抗示例挖掘","authors":"Chenhao Lin;Xiang Ji;Yulong Yang;Qian Li;Zhengyu Zhao;Zhe Peng;Run Wang;Liming Fang;Chao Shen","doi":"10.1109/TIFS.2024.3516554","DOIUrl":null,"url":null,"abstract":"Adversarial training (AT) is widely considered the state-of-the-art technique for improving the robustness of deep neural networks (DNNs) against adversarial examples (AEs). Nevertheless, recent studies have revealed that adversarially trained models are prone to unfairness problems. Recent works in this field usually apply class-wise regularization methods to enhance the fairness of AT. However, this paper discovers that these paradigms can be sub-optimal in improving robust fairness. Specifically, we empirically observe that the AEs that are already robust (referred to as “easy AEs” in this paper) are useless and even harmful in improving robust fairness. To this end, we propose the hard adversarial example mining (HAM) technique which concentrates on mining hard AEs while discarding the easy AEs in AT. Specifically, HAM identifies the easy AEs and hard AEs with a fast adversarial attack method. By discarding the easy AEs and reweighting the hard AEs, the robust fairness of the model can be efficiently and effectively improved. Extensive experimental results on four image classification datasets demonstrate the improvement of HAM in robust fairness and training efficiency compared to several state-of-the-art fair adversarial training methods. Our code is available at \n<uri>https://github.com/yyl-github-1896/HAM</uri>\n.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"350-363"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hard Adversarial Example Mining for Improving Robust Fairness\",\"authors\":\"Chenhao Lin;Xiang Ji;Yulong Yang;Qian Li;Zhengyu Zhao;Zhe Peng;Run Wang;Liming Fang;Chao Shen\",\"doi\":\"10.1109/TIFS.2024.3516554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial training (AT) is widely considered the state-of-the-art technique for improving the robustness of deep neural networks (DNNs) against adversarial examples (AEs). Nevertheless, recent studies have revealed that adversarially trained models are prone to unfairness problems. Recent works in this field usually apply class-wise regularization methods to enhance the fairness of AT. However, this paper discovers that these paradigms can be sub-optimal in improving robust fairness. Specifically, we empirically observe that the AEs that are already robust (referred to as “easy AEs” in this paper) are useless and even harmful in improving robust fairness. To this end, we propose the hard adversarial example mining (HAM) technique which concentrates on mining hard AEs while discarding the easy AEs in AT. Specifically, HAM identifies the easy AEs and hard AEs with a fast adversarial attack method. By discarding the easy AEs and reweighting the hard AEs, the robust fairness of the model can be efficiently and effectively improved. Extensive experimental results on four image classification datasets demonstrate the improvement of HAM in robust fairness and training efficiency compared to several state-of-the-art fair adversarial training methods. Our code is available at \\n<uri>https://github.com/yyl-github-1896/HAM</uri>\\n.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"350-363\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10795188/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795188/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Hard Adversarial Example Mining for Improving Robust Fairness
Adversarial training (AT) is widely considered the state-of-the-art technique for improving the robustness of deep neural networks (DNNs) against adversarial examples (AEs). Nevertheless, recent studies have revealed that adversarially trained models are prone to unfairness problems. Recent works in this field usually apply class-wise regularization methods to enhance the fairness of AT. However, this paper discovers that these paradigms can be sub-optimal in improving robust fairness. Specifically, we empirically observe that the AEs that are already robust (referred to as “easy AEs” in this paper) are useless and even harmful in improving robust fairness. To this end, we propose the hard adversarial example mining (HAM) technique which concentrates on mining hard AEs while discarding the easy AEs in AT. Specifically, HAM identifies the easy AEs and hard AEs with a fast adversarial attack method. By discarding the easy AEs and reweighting the hard AEs, the robust fairness of the model can be efficiently and effectively improved. Extensive experimental results on four image classification datasets demonstrate the improvement of HAM in robust fairness and training efficiency compared to several state-of-the-art fair adversarial training methods. Our code is available at
https://github.com/yyl-github-1896/HAM
.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features