{"title":"分数阶非线性磁感应杂质","authors":"Mario I. Molina","doi":"10.1016/j.chaos.2024.115774","DOIUrl":null,"url":null,"abstract":"<div><div>We study a one-dimensional split-ring resonator array containing a single linear/nonlinear magnetic impurity where the usual discrete Laplacian is replaced by a fractional one. In the absence of the impurity, the dispersion relation for magnetoinductive waves is obtained in closed form, with a bandwidth that decreases with a decrease in the fractional exponent. Next, by using lattice Green functions, we obtain the bound state energy and its spatial profile, as a function of the impurity strength. We demonstrate that, at large impurity strengths, the bound state energy becomes linear with impurity strength for both linear and nonlinear impurity cases. The transmission of plane waves is computed semi-analytical, showing a qualitative similarity between the linear and nonlinear impurity cases. Finally, we compute the amount of magnetic energy remaining at the impurity site after evolving the system from a completely initially localized condition at the impurity site. For both cases, linear and nonlinear impurities, it is found that for a fixed fractional exponent, there is trapping of magnetic energy, which increases with an increase in impurity strength. The trapping increases with a decreased fractional exponent for a fixed magnetic strength.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115774"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fractional nonlinear magnetoinductive impurity\",\"authors\":\"Mario I. Molina\",\"doi\":\"10.1016/j.chaos.2024.115774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a one-dimensional split-ring resonator array containing a single linear/nonlinear magnetic impurity where the usual discrete Laplacian is replaced by a fractional one. In the absence of the impurity, the dispersion relation for magnetoinductive waves is obtained in closed form, with a bandwidth that decreases with a decrease in the fractional exponent. Next, by using lattice Green functions, we obtain the bound state energy and its spatial profile, as a function of the impurity strength. We demonstrate that, at large impurity strengths, the bound state energy becomes linear with impurity strength for both linear and nonlinear impurity cases. The transmission of plane waves is computed semi-analytical, showing a qualitative similarity between the linear and nonlinear impurity cases. Finally, we compute the amount of magnetic energy remaining at the impurity site after evolving the system from a completely initially localized condition at the impurity site. For both cases, linear and nonlinear impurities, it is found that for a fixed fractional exponent, there is trapping of magnetic energy, which increases with an increase in impurity strength. The trapping increases with a decreased fractional exponent for a fixed magnetic strength.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115774\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013262\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013262","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The fractional nonlinear magnetoinductive impurity
We study a one-dimensional split-ring resonator array containing a single linear/nonlinear magnetic impurity where the usual discrete Laplacian is replaced by a fractional one. In the absence of the impurity, the dispersion relation for magnetoinductive waves is obtained in closed form, with a bandwidth that decreases with a decrease in the fractional exponent. Next, by using lattice Green functions, we obtain the bound state energy and its spatial profile, as a function of the impurity strength. We demonstrate that, at large impurity strengths, the bound state energy becomes linear with impurity strength for both linear and nonlinear impurity cases. The transmission of plane waves is computed semi-analytical, showing a qualitative similarity between the linear and nonlinear impurity cases. Finally, we compute the amount of magnetic energy remaining at the impurity site after evolving the system from a completely initially localized condition at the impurity site. For both cases, linear and nonlinear impurities, it is found that for a fixed fractional exponent, there is trapping of magnetic energy, which increases with an increase in impurity strength. The trapping increases with a decreased fractional exponent for a fixed magnetic strength.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.