{"title":"关于三维扰动剪切流的李对称分析","authors":"Sougata Mandal, Subhankar Sil, Sukhendu Ghosh","doi":"10.1016/j.chaos.2024.115875","DOIUrl":null,"url":null,"abstract":"The study presents symmetry classifications of the linearized Navier–Stokes equations, governing the three-dimensional incompressible plane shear flows. The linearization is done with respect to small perturbations. In the case of a two-dimensional shear flow with a linear profile, Nold and Oberlack (PoF, 2013) showed the existence of three different kinds of linear instability modes using the framework of Lie symmetry classification. Those perturbation modes are normal mode, kelvin mode, and a new type invariant mode. We have extended their analysis for a three-dimensional plane shear flow with linear as well as non-linear base profiles. The invariant ansatz functions are systematically derived employing the full set of symmetries. The analysis is done for both viscous and inviscid flows by considering the linear, exponential, and fractional shear flow profiles. In the derivation process, the set of infinitesimal generators for the generalized system is first obtained using the classical Lie symmetry analysis, and then, some additional symmetries are searched out for each sub-case. Further, the governing system of partial differential equations is converted into ordinary differential equations by using symmetries and invariant conditions. The most popular three-dimensional normal modes and the Orr–Sommerfeld equation are acquired by taking the general symmetry. Moreover, for each of the sub-cases, we have derived the possible exact solutions of the associated system, and the behaviors of the solutions are explored for different parameter ranges.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"56 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Lie symmetry analysis of three-dimensional perturbed shear flows\",\"authors\":\"Sougata Mandal, Subhankar Sil, Sukhendu Ghosh\",\"doi\":\"10.1016/j.chaos.2024.115875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study presents symmetry classifications of the linearized Navier–Stokes equations, governing the three-dimensional incompressible plane shear flows. The linearization is done with respect to small perturbations. In the case of a two-dimensional shear flow with a linear profile, Nold and Oberlack (PoF, 2013) showed the existence of three different kinds of linear instability modes using the framework of Lie symmetry classification. Those perturbation modes are normal mode, kelvin mode, and a new type invariant mode. We have extended their analysis for a three-dimensional plane shear flow with linear as well as non-linear base profiles. The invariant ansatz functions are systematically derived employing the full set of symmetries. The analysis is done for both viscous and inviscid flows by considering the linear, exponential, and fractional shear flow profiles. In the derivation process, the set of infinitesimal generators for the generalized system is first obtained using the classical Lie symmetry analysis, and then, some additional symmetries are searched out for each sub-case. Further, the governing system of partial differential equations is converted into ordinary differential equations by using symmetries and invariant conditions. The most popular three-dimensional normal modes and the Orr–Sommerfeld equation are acquired by taking the general symmetry. Moreover, for each of the sub-cases, we have derived the possible exact solutions of the associated system, and the behaviors of the solutions are explored for different parameter ranges.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115875\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115875","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the Lie symmetry analysis of three-dimensional perturbed shear flows
The study presents symmetry classifications of the linearized Navier–Stokes equations, governing the three-dimensional incompressible plane shear flows. The linearization is done with respect to small perturbations. In the case of a two-dimensional shear flow with a linear profile, Nold and Oberlack (PoF, 2013) showed the existence of three different kinds of linear instability modes using the framework of Lie symmetry classification. Those perturbation modes are normal mode, kelvin mode, and a new type invariant mode. We have extended their analysis for a three-dimensional plane shear flow with linear as well as non-linear base profiles. The invariant ansatz functions are systematically derived employing the full set of symmetries. The analysis is done for both viscous and inviscid flows by considering the linear, exponential, and fractional shear flow profiles. In the derivation process, the set of infinitesimal generators for the generalized system is first obtained using the classical Lie symmetry analysis, and then, some additional symmetries are searched out for each sub-case. Further, the governing system of partial differential equations is converted into ordinary differential equations by using symmetries and invariant conditions. The most popular three-dimensional normal modes and the Orr–Sommerfeld equation are acquired by taking the general symmetry. Moreover, for each of the sub-cases, we have derived the possible exact solutions of the associated system, and the behaviors of the solutions are explored for different parameter ranges.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.