粘性土流变固结作用下透水管桩桩土相互作用半解析研究

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Lun Hua, Yi Tian, Yue Gui, Wenlian Liu, Wenbing Wu
{"title":"粘性土流变固结作用下透水管桩桩土相互作用半解析研究","authors":"Lun Hua,&nbsp;Yi Tian,&nbsp;Yue Gui,&nbsp;Wenlian Liu,&nbsp;Wenbing Wu","doi":"10.1002/nag.3915","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Permeable pipe pile, a novel pile foundation integrating drainage and bearing functions, improves the bearing capacity of the pile foundation by accelerating the consolidation of the soil around the pile. In this study, a mathematical model is established to simulate the consolidation of surrounding clayey soils and the pile–soil interaction, where the rheological properties of the soils are described with the fractional derivative-based Merchant model, and the impeded drainage boundary is used to simulate the pile–soil interfacial drainage boundary. Corresponding solutions for pile–soil relative displacement, skin friction, and axial force on the pile shaft are derived by means of semi-analytical methods, and they are validated by comparing with experimental results and numerical simulation results. Based on the proposed semi-analytical model, a series of parametric analyses are conducted to investigate the influences of fractional orders, viscosity coefficients, pile–soil interface parameters, and pile-head loads on the pile–soil interaction characteristics. It is observed that during the transition stage, the axial force increases linearly with depth in the plastic segment, and then increases nonlinearly in the elastic segment until it decreases after reaching the neutral plane. In the elastic segment, the axial force on the pile shaft for a given time increases with the increases in the fractional order or the pile–soil interface parameter, but decreases with the increase of viscosity coefficient.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 3","pages":"1058-1074"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Analytical Study of Pile–Soil Interaction on a Permeable Pipe Pile Subjected to Rheological Consolidation of Clayey Soils\",\"authors\":\"Lun Hua,&nbsp;Yi Tian,&nbsp;Yue Gui,&nbsp;Wenlian Liu,&nbsp;Wenbing Wu\",\"doi\":\"10.1002/nag.3915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Permeable pipe pile, a novel pile foundation integrating drainage and bearing functions, improves the bearing capacity of the pile foundation by accelerating the consolidation of the soil around the pile. In this study, a mathematical model is established to simulate the consolidation of surrounding clayey soils and the pile–soil interaction, where the rheological properties of the soils are described with the fractional derivative-based Merchant model, and the impeded drainage boundary is used to simulate the pile–soil interfacial drainage boundary. Corresponding solutions for pile–soil relative displacement, skin friction, and axial force on the pile shaft are derived by means of semi-analytical methods, and they are validated by comparing with experimental results and numerical simulation results. Based on the proposed semi-analytical model, a series of parametric analyses are conducted to investigate the influences of fractional orders, viscosity coefficients, pile–soil interface parameters, and pile-head loads on the pile–soil interaction characteristics. It is observed that during the transition stage, the axial force increases linearly with depth in the plastic segment, and then increases nonlinearly in the elastic segment until it decreases after reaching the neutral plane. In the elastic segment, the axial force on the pile shaft for a given time increases with the increases in the fractional order or the pile–soil interface parameter, but decreases with the increase of viscosity coefficient.</p>\\n </div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 3\",\"pages\":\"1058-1074\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3915\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

透水管桩是一种集排水和承载功能于一体的新型桩基础,它通过加速桩周土体的固结来提高桩基础的承载能力。本文建立了模拟周围黏性土固结和桩土相互作用的数学模型,采用基于分数阶导数的Merchant模型描述土的流变特性,采用阻碍排水边界模拟桩土界面排水边界。采用半解析方法推导出相应的桩土相对位移、桩身摩阻力和桩身轴力的解,并与试验结果和数值模拟结果进行了对比验证。基于所提出的半解析模型,进行了一系列参数分析,研究了分数阶数、黏度系数、桩-土界面参数和桩头荷载对桩-土相互作用特性的影响。观察到,在过渡阶段,轴向力在塑性段随深度线性增加,然后在弹性段非线性增加,直至到达中性面后减小。在弹性段,一定时间内桩身所受轴力随分数阶或桩土界面参数的增大而增大,随粘滞系数的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Analytical Study of Pile–Soil Interaction on a Permeable Pipe Pile Subjected to Rheological Consolidation of Clayey Soils

Permeable pipe pile, a novel pile foundation integrating drainage and bearing functions, improves the bearing capacity of the pile foundation by accelerating the consolidation of the soil around the pile. In this study, a mathematical model is established to simulate the consolidation of surrounding clayey soils and the pile–soil interaction, where the rheological properties of the soils are described with the fractional derivative-based Merchant model, and the impeded drainage boundary is used to simulate the pile–soil interfacial drainage boundary. Corresponding solutions for pile–soil relative displacement, skin friction, and axial force on the pile shaft are derived by means of semi-analytical methods, and they are validated by comparing with experimental results and numerical simulation results. Based on the proposed semi-analytical model, a series of parametric analyses are conducted to investigate the influences of fractional orders, viscosity coefficients, pile–soil interface parameters, and pile-head loads on the pile–soil interaction characteristics. It is observed that during the transition stage, the axial force increases linearly with depth in the plastic segment, and then increases nonlinearly in the elastic segment until it decreases after reaching the neutral plane. In the elastic segment, the axial force on the pile shaft for a given time increases with the increases in the fractional order or the pile–soil interface parameter, but decreases with the increase of viscosity coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信