P2D锂离子电池模型快速无创参数化的全局-局部多阶段算法

IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Toshan Wickramanayake;Kamyar Mehran
{"title":"P2D锂离子电池模型快速无创参数化的全局-局部多阶段算法","authors":"Toshan Wickramanayake;Kamyar Mehran","doi":"10.1109/TTE.2024.3516489","DOIUrl":null,"url":null,"abstract":"The pseudo-two-dimensional (P2D) model is a full-order physics-based model for lithium-ion batteries (LiBs), capable of providing accurate predictions of battery behavior. However, parameterizing the P2D model is complex due to its extensive parameter space, making parameter estimation (PE) particularly challenging. Thus, this research presents a novel, multistage, noninvasive algorithm to efficiently and accurately estimate these parameters. The algorithm operates in three stages. First, it defines essential inputs such as battery chemistry, parameter boundaries, and reference data. The second stage focuses on PE using a unique global-local search strategy. Here, particle swarm optimization (PSO) explores the global parameter space, followed by a novel parallel implementation of simulated annealing (SA) for refined local optimization. Finally, the third stage is a validation process that selects the output parameter set with the lowest prediction error across both estimation and validation stages. The proposed algorithm achieves a root-mean-square error under 17 mV, estimating 18 high-sensitivity parameters with an average error of 30%, and a rapid processing time of 52 min on average—among the fastest on record. This PE algorithm offers researchers and engineers a highly efficient, precise open-source tool for P2D model parameterization, potentially enhancing battery management and performance in practical applications.","PeriodicalId":56269,"journal":{"name":"IEEE Transactions on Transportation Electrification","volume":"11 2","pages":"6812-6825"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Global-Local Multistage Algorithm for Fast Noninvasive Parameterization of P2D Lithium-Ion Battery Models\",\"authors\":\"Toshan Wickramanayake;Kamyar Mehran\",\"doi\":\"10.1109/TTE.2024.3516489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pseudo-two-dimensional (P2D) model is a full-order physics-based model for lithium-ion batteries (LiBs), capable of providing accurate predictions of battery behavior. However, parameterizing the P2D model is complex due to its extensive parameter space, making parameter estimation (PE) particularly challenging. Thus, this research presents a novel, multistage, noninvasive algorithm to efficiently and accurately estimate these parameters. The algorithm operates in three stages. First, it defines essential inputs such as battery chemistry, parameter boundaries, and reference data. The second stage focuses on PE using a unique global-local search strategy. Here, particle swarm optimization (PSO) explores the global parameter space, followed by a novel parallel implementation of simulated annealing (SA) for refined local optimization. Finally, the third stage is a validation process that selects the output parameter set with the lowest prediction error across both estimation and validation stages. The proposed algorithm achieves a root-mean-square error under 17 mV, estimating 18 high-sensitivity parameters with an average error of 30%, and a rapid processing time of 52 min on average—among the fastest on record. This PE algorithm offers researchers and engineers a highly efficient, precise open-source tool for P2D model parameterization, potentially enhancing battery management and performance in practical applications.\",\"PeriodicalId\":56269,\"journal\":{\"name\":\"IEEE Transactions on Transportation Electrification\",\"volume\":\"11 2\",\"pages\":\"6812-6825\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Transportation Electrification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10795209/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Transportation Electrification","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795209/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

伪二维(P2D)模型是锂离子电池(LiBs)的全阶物理模型,能够提供电池行为的准确预测。然而,P2D模型的参数化由于其广泛的参数空间而非常复杂,使得参数估计(PE)特别具有挑战性。因此,本研究提出了一种新的、多阶段的、无创的算法来高效、准确地估计这些参数。该算法分为三个阶段。首先,它定义了基本输入,如电池化学、参数边界和参考数据。第二阶段的重点是PE使用独特的全局-局部搜索策略。在这里,粒子群优化(PSO)探索全局参数空间,然后是一种新的并行实现模拟退火(SA)来进行精细的局部优化。最后,第三阶段是一个验证过程,它在估计和验证阶段中选择预测误差最小的输出参数集。该算法实现了17 mV以下的均方根误差,估计了18个高灵敏度参数,平均误差为30%,处理时间平均为52 min,是有记录以来最快的处理时间之一。这种PE算法为研究人员和工程师提供了一种高效、精确的P2D模型参数化开源工具,在实际应用中有可能增强电池管理和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Global-Local Multistage Algorithm for Fast Noninvasive Parameterization of P2D Lithium-Ion Battery Models
The pseudo-two-dimensional (P2D) model is a full-order physics-based model for lithium-ion batteries (LiBs), capable of providing accurate predictions of battery behavior. However, parameterizing the P2D model is complex due to its extensive parameter space, making parameter estimation (PE) particularly challenging. Thus, this research presents a novel, multistage, noninvasive algorithm to efficiently and accurately estimate these parameters. The algorithm operates in three stages. First, it defines essential inputs such as battery chemistry, parameter boundaries, and reference data. The second stage focuses on PE using a unique global-local search strategy. Here, particle swarm optimization (PSO) explores the global parameter space, followed by a novel parallel implementation of simulated annealing (SA) for refined local optimization. Finally, the third stage is a validation process that selects the output parameter set with the lowest prediction error across both estimation and validation stages. The proposed algorithm achieves a root-mean-square error under 17 mV, estimating 18 high-sensitivity parameters with an average error of 30%, and a rapid processing time of 52 min on average—among the fastest on record. This PE algorithm offers researchers and engineers a highly efficient, precise open-source tool for P2D model parameterization, potentially enhancing battery management and performance in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Transportation Electrification
IEEE Transactions on Transportation Electrification Engineering-Electrical and Electronic Engineering
CiteScore
12.20
自引率
15.70%
发文量
449
期刊介绍: IEEE Transactions on Transportation Electrification is focused on components, sub-systems, systems, standards, and grid interface technologies related to power and energy conversion, propulsion, and actuation for all types of electrified vehicles including on-road, off-road, off-highway, and rail vehicles, airplanes, and ships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信