{"title":"钯催化多重C─H活化的三组分环化反应","authors":"Shuai Yang, Xiang Zuo, Yanghui Zhang","doi":"10.1039/d4qo01857e","DOIUrl":null,"url":null,"abstract":"The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"21 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palladium-Catalyzed Three-Component Annulation Reaction Involving Multiple C─H Activation\",\"authors\":\"Shuai Yang, Xiang Zuo, Yanghui Zhang\",\"doi\":\"10.1039/d4qo01857e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qo01857e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01857e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.