Huitong Wang, Zhaojie Su, Yunyun Qian, Baojie Shi, Hao Li, Wenbin An, Yi Xiao, Cheng Qiu, Zhixiang Guo, Jianfa Zhong, Xia Wu, Jiajia Chen, Ying Wang, Wei Zeng, Linghui Zhan, Jie Wang
{"title":"戊甲素-3调节脂多糖诱导的肝损伤中的肝细胞铁下垂和先天免疫反应。","authors":"Huitong Wang, Zhaojie Su, Yunyun Qian, Baojie Shi, Hao Li, Wenbin An, Yi Xiao, Cheng Qiu, Zhixiang Guo, Jianfa Zhong, Xia Wu, Jiajia Chen, Ying Wang, Wei Zeng, Linghui Zhan, Jie Wang","doi":"10.1186/s43556-024-00227-6","DOIUrl":null,"url":null,"abstract":"<p><p>The liver plays a crucial role in the immune response during endotoxemia and is one of the critical targets for sepsis-related injuries. As a secretory factor involved in inflammation, pentraxin-3 (PTX3) has been demonstrated to regulate hepatic homeostasis; however, the relationship between PTX3 and cell crosstalk between immune cells and hepatocytes in the liver remains incompletely understood. In this study, we revealed that, compared with WT mice, Ptx3<sup>-/-</sup> mice with lipopolysaccharide (LPS)-induced endotoxemia exhibited alleviated liver damage, with reduced serum alanine transaminase and aspartate transaminase levels and an improved survival rate. Mechanistically, RNA-Seq and western blot results revealed that Ptx3 knockdown in hepatocytes increased the expression of Tfrc and Ccl20; consequently, Ptx3 deficiency regulated LPS-induced hepatocyte ferroptosis via increased mitochondrial reactive oxygen species and Fe<sup>2+</sup> and recruited more macrophages by CCL20/CCR6 axis to be involved in inflammation and the clearance of harmful substances. Moreover, western blot and immunofluorescence staining confirmed that the NF-κB signaling pathway was upregulated upon LPS treatment in Ptx3-knockdown macrophages, promoting phagocytosis and polarization toward M1 macrophages. Collectively, our findings show that the absence of Ptx3 can ameliorate sepsis-induced liver injury by regulating hepatocyte ferroptosis and promote the recruitment and polarization of M1 macrophages. These findings offer a key basis for the development of effective treatments for acute infections.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"5 1","pages":"68"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638432/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pentraxin-3 modulates hepatocyte ferroptosis and the innate immune response in LPS-induced liver injury.\",\"authors\":\"Huitong Wang, Zhaojie Su, Yunyun Qian, Baojie Shi, Hao Li, Wenbin An, Yi Xiao, Cheng Qiu, Zhixiang Guo, Jianfa Zhong, Xia Wu, Jiajia Chen, Ying Wang, Wei Zeng, Linghui Zhan, Jie Wang\",\"doi\":\"10.1186/s43556-024-00227-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver plays a crucial role in the immune response during endotoxemia and is one of the critical targets for sepsis-related injuries. As a secretory factor involved in inflammation, pentraxin-3 (PTX3) has been demonstrated to regulate hepatic homeostasis; however, the relationship between PTX3 and cell crosstalk between immune cells and hepatocytes in the liver remains incompletely understood. In this study, we revealed that, compared with WT mice, Ptx3<sup>-/-</sup> mice with lipopolysaccharide (LPS)-induced endotoxemia exhibited alleviated liver damage, with reduced serum alanine transaminase and aspartate transaminase levels and an improved survival rate. Mechanistically, RNA-Seq and western blot results revealed that Ptx3 knockdown in hepatocytes increased the expression of Tfrc and Ccl20; consequently, Ptx3 deficiency regulated LPS-induced hepatocyte ferroptosis via increased mitochondrial reactive oxygen species and Fe<sup>2+</sup> and recruited more macrophages by CCL20/CCR6 axis to be involved in inflammation and the clearance of harmful substances. Moreover, western blot and immunofluorescence staining confirmed that the NF-κB signaling pathway was upregulated upon LPS treatment in Ptx3-knockdown macrophages, promoting phagocytosis and polarization toward M1 macrophages. Collectively, our findings show that the absence of Ptx3 can ameliorate sepsis-induced liver injury by regulating hepatocyte ferroptosis and promote the recruitment and polarization of M1 macrophages. These findings offer a key basis for the development of effective treatments for acute infections.</p>\",\"PeriodicalId\":74218,\"journal\":{\"name\":\"Molecular biomedicine\",\"volume\":\"5 1\",\"pages\":\"68\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638432/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43556-024-00227-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-024-00227-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pentraxin-3 modulates hepatocyte ferroptosis and the innate immune response in LPS-induced liver injury.
The liver plays a crucial role in the immune response during endotoxemia and is one of the critical targets for sepsis-related injuries. As a secretory factor involved in inflammation, pentraxin-3 (PTX3) has been demonstrated to regulate hepatic homeostasis; however, the relationship between PTX3 and cell crosstalk between immune cells and hepatocytes in the liver remains incompletely understood. In this study, we revealed that, compared with WT mice, Ptx3-/- mice with lipopolysaccharide (LPS)-induced endotoxemia exhibited alleviated liver damage, with reduced serum alanine transaminase and aspartate transaminase levels and an improved survival rate. Mechanistically, RNA-Seq and western blot results revealed that Ptx3 knockdown in hepatocytes increased the expression of Tfrc and Ccl20; consequently, Ptx3 deficiency regulated LPS-induced hepatocyte ferroptosis via increased mitochondrial reactive oxygen species and Fe2+ and recruited more macrophages by CCL20/CCR6 axis to be involved in inflammation and the clearance of harmful substances. Moreover, western blot and immunofluorescence staining confirmed that the NF-κB signaling pathway was upregulated upon LPS treatment in Ptx3-knockdown macrophages, promoting phagocytosis and polarization toward M1 macrophages. Collectively, our findings show that the absence of Ptx3 can ameliorate sepsis-induced liver injury by regulating hepatocyte ferroptosis and promote the recruitment and polarization of M1 macrophages. These findings offer a key basis for the development of effective treatments for acute infections.