ZMIX:使用GWAS关联z分数估计祖先比例。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae128
Trent Dennis, Donghyung Lee
{"title":"ZMIX:使用GWAS关联z分数估计祖先比例。","authors":"Trent Dennis, Donghyung Lee","doi":"10.1093/bioadv/vbae128","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>With larger and more diverse studies becoming the standard in genome-wide association studies (GWAS), accurate estimation of ancestral proportions is increasingly important for summary-statistics-based methods such as those for imputing association summary statistics, adjusting allele frequencies (AFs) for ancestry, and prioritizing disease candidate variants or genes. Existing methods for estimating ancestral proportions in GWAS rely on the availability of study reference AFs, which are often inaccessible in current GWAS due to privacy concerns.</p><p><strong>Results: </strong>In this study, we propose ZMIX (Z-score-based estimation of ethnic MIXing proportions), a novel method for estimating ethnic mixing proportions in GWAS using only association Z-scores, and we compare its performance to existing reference AF-based methods in both real-world and simulated GWAS settings. We found that ZMIX offered comparable results to the reference AF-based methods in simulation and real-world studies. When applied to summary-statistics imputation, all three methods produced high-quality imputations with almost identical results.</p><p><strong>Availability and implementation: </strong>https://github.com/statsleelab/gauss.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae128"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632184/pdf/","citationCount":"0","resultStr":"{\"title\":\"ZMIX: estimating ancestry proportions using GWAS association Z-scores.\",\"authors\":\"Trent Dennis, Donghyung Lee\",\"doi\":\"10.1093/bioadv/vbae128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>With larger and more diverse studies becoming the standard in genome-wide association studies (GWAS), accurate estimation of ancestral proportions is increasingly important for summary-statistics-based methods such as those for imputing association summary statistics, adjusting allele frequencies (AFs) for ancestry, and prioritizing disease candidate variants or genes. Existing methods for estimating ancestral proportions in GWAS rely on the availability of study reference AFs, which are often inaccessible in current GWAS due to privacy concerns.</p><p><strong>Results: </strong>In this study, we propose ZMIX (Z-score-based estimation of ethnic MIXing proportions), a novel method for estimating ethnic mixing proportions in GWAS using only association Z-scores, and we compare its performance to existing reference AF-based methods in both real-world and simulated GWAS settings. We found that ZMIX offered comparable results to the reference AF-based methods in simulation and real-world studies. When applied to summary-statistics imputation, all three methods produced high-quality imputations with almost identical results.</p><p><strong>Availability and implementation: </strong>https://github.com/statsleelab/gauss.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae128\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:随着更大规模和更多样化的研究成为全基因组关联研究(GWAS)的标准,对祖先比例的准确估计对于基于汇总统计的方法越来越重要,例如用于估算关联汇总统计、调整祖先等位基因频率(AFs)和确定疾病候选变异或基因的优先级的方法。现有的估算GWAS中祖先比例的方法依赖于研究参考AFs的可用性,由于隐私问题,在当前的GWAS中往往无法获得这些参考AFs。结果:在本研究中,我们提出了ZMIX(基于z分数的种族混合比例估计),这是一种仅使用关联z分数估计GWAS中种族混合比例的新方法,我们将其性能与现有的基于af的参考方法在现实世界和模拟GWAS设置中的性能进行了比较。我们发现ZMIX在模拟和现实世界的研究中提供了与参考的基于af的方法相当的结果。当应用于汇总统计推算时,所有三种方法都产生了高质量的推算,结果几乎相同。可用性和实现:https://github.com/statsleelab/gauss。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZMIX: estimating ancestry proportions using GWAS association Z-scores.

Motivation: With larger and more diverse studies becoming the standard in genome-wide association studies (GWAS), accurate estimation of ancestral proportions is increasingly important for summary-statistics-based methods such as those for imputing association summary statistics, adjusting allele frequencies (AFs) for ancestry, and prioritizing disease candidate variants or genes. Existing methods for estimating ancestral proportions in GWAS rely on the availability of study reference AFs, which are often inaccessible in current GWAS due to privacy concerns.

Results: In this study, we propose ZMIX (Z-score-based estimation of ethnic MIXing proportions), a novel method for estimating ethnic mixing proportions in GWAS using only association Z-scores, and we compare its performance to existing reference AF-based methods in both real-world and simulated GWAS settings. We found that ZMIX offered comparable results to the reference AF-based methods in simulation and real-world studies. When applied to summary-statistics imputation, all three methods produced high-quality imputations with almost identical results.

Availability and implementation: https://github.com/statsleelab/gauss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信