{"title":"在交叉随机对照试验中增强总生存率因果推断的多重归算方法。","authors":"Ruochen Zhao, Junjing Lin, Jing Xu, Guohui Liu, Bingxia Wang, Jianchang Lin","doi":"10.1080/10543406.2024.2434500","DOIUrl":null,"url":null,"abstract":"<p><p>Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple imputation approach in enhancing causal inference for overall survival in randomized controlled trials with crossover.\",\"authors\":\"Ruochen Zhao, Junjing Lin, Jing Xu, Guohui Liu, Bingxia Wang, Jianchang Lin\",\"doi\":\"10.1080/10543406.2024.2434500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2434500\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2434500","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A multiple imputation approach in enhancing causal inference for overall survival in randomized controlled trials with crossover.
Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.