在交叉随机对照试验中增强总生存率因果推断的多重归算方法。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Ruochen Zhao, Junjing Lin, Jing Xu, Guohui Liu, Bingxia Wang, Jianchang Lin
{"title":"在交叉随机对照试验中增强总生存率因果推断的多重归算方法。","authors":"Ruochen Zhao, Junjing Lin, Jing Xu, Guohui Liu, Bingxia Wang, Jianchang Lin","doi":"10.1080/10543406.2024.2434500","DOIUrl":null,"url":null,"abstract":"<p><p>Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple imputation approach in enhancing causal inference for overall survival in randomized controlled trials with crossover.\",\"authors\":\"Ruochen Zhao, Junjing Lin, Jing Xu, Guohui Liu, Bingxia Wang, Jianchang Lin\",\"doi\":\"10.1080/10543406.2024.2434500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2434500\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2434500","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

随机对照试验中的交叉或治疗转换不仅在新药的开发和批准方面提出了显著的挑战,而且在其报销方面也提出了一个复杂的问题,特别是在肿瘤学方面。当试验性治疗优于对照组时,由于疾病进展或其他原因从对照组切换到试验性治疗可能会导致治疗益处的低估。保持秩结构失效时间(RPSFT)和两阶段估计(TSE)方法通常通过估计反事实生存时间来调整治疗切换。然而,这些方法可能通过调整切换者的审查时间来诱导信息审查,而不改变非切换者的审查时间。现有的再审查或审查加权逆概率(IPCW)等方法通常与RPSFT或TSE一起用于处理信息审查,但可能导致长期信息丢失或遭受模型错误规范。本文提出了一种基于自举过程的Kaplan-Meier多重插值方法(KMIB),以解决治疗切换调整方法中的信息过滤问题。该方法可以避免信息丢失,并且对模型错误规范具有鲁棒性。在我们研究的场景中,仿真研究表明,该方法在处理效果较小时优于其他调整方法,并且在其他场景下,尽管切换概率不同,但表现相似。非小细胞肺癌(NSCLC)的案例研究也提供了证明该方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiple imputation approach in enhancing causal inference for overall survival in randomized controlled trials with crossover.

Crossover or treatment-switching in randomized controlled trials presents notable challenges not only in the development and approval of new drugs but also poses a complex issue in their reimbursement, especially in oncology. When the investigational treatment is superior to control, crossover from control to investigational treatment upon disease progression or for other reasons will likely cause the underestimation of treatment benefit. Rank Preserving Structural Failure Time (RPSFT) and Two-Stage Estimation (TSE) methods are commonly employed to adjust for treatment switching by estimating counterfactual survival times. However, these methods may induce informative censoring by adjusting censoring times for switchers while leaving those for non-switchers unchanged. Existing approaches such as re-censoring or inverse probability of censoring weighting (IPCW) are often used alongside RPSFT or TSE to handle informative censoring, but may result in long-term information loss or suffer from model misspecification. In this paper, Kaplan-Meier multiple imputation with bootstrap procedure (KMIB) is proposed to address the informative censoring issues in adjustment methods for treatment switching. This approach can avoid information loss and is robust to model misspecification. In the scenarios that we investigate, simulation studies show that this approach performs better than other adjustment methods when the treatment effect is small, and behave similarly under other scenarios despite different switching probability. A case study in non-small cell lung cancer (NSCLC) is also provided to demonstrate the use of this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信