Ramsés Santacruz-Márquez, Luz Del Carmen Sánchez Peña, Jodi A Flaws, Isabel Hernández-Ochoa
{"title":"TiO2纳米颗粒对腔泡的影响取决于纳米颗粒的内化率。","authors":"Ramsés Santacruz-Márquez, Luz Del Carmen Sánchez Peña, Jodi A Flaws, Isabel Hernández-Ochoa","doi":"10.1093/toxsci/kfae155","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely produced metallic NPs due to commercial and industrial applications in products including food, cosmetics, paints, and plastics. TiO2 NPs are released into the environment posing health risks for humans and wildlife. Widespread uses have raised concerns about the potential toxicity of TiO2 NPs in reproduction. The ovary is an important endocrine organ responsible for sex steroid hormone production and folliculogenesis. NPs can reach the ovary, but limited information is available regarding NP toxicity and its effects on ovarian antral follicles. Thus, we tested the hypothesis that exposure to TiO2 NP affects sex hormone synthesis, oxidative stress, and antioxidant response in ovarian antral follicles in vitro. In addition, we characterized the NP internalization in the antral follicles over time to determine any association between NP internalization and effects on the antral follicle. Antral follicles were exposed to vehicle control or TiO2 NPs (5, 25, and 50 µg/ml) for 96 h. The lowest NP concentration (5 µg/ml) showed no internalization and no effects in antral follicles. The 25-µg/ml concentration had the highest internalization rate, leading to increased mRNA ratio of Bax to Bcl2. Interestingly, the highest concentration (50 µg/ml) showed lower internalization compared with the 25 µg/ml, with altered levels of steroidogenic involved genes and increased levels of progesterone and testosterone compared with control. In conclusion, these data suggest that TiO2 NP is internalized in antral follicles as the first step process in impairing follicle functions.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"31-42"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of TiO2 nanoparticles on antral follicles is dependent on the nanoparticle internalization rate.\",\"authors\":\"Ramsés Santacruz-Márquez, Luz Del Carmen Sánchez Peña, Jodi A Flaws, Isabel Hernández-Ochoa\",\"doi\":\"10.1093/toxsci/kfae155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely produced metallic NPs due to commercial and industrial applications in products including food, cosmetics, paints, and plastics. TiO2 NPs are released into the environment posing health risks for humans and wildlife. Widespread uses have raised concerns about the potential toxicity of TiO2 NPs in reproduction. The ovary is an important endocrine organ responsible for sex steroid hormone production and folliculogenesis. NPs can reach the ovary, but limited information is available regarding NP toxicity and its effects on ovarian antral follicles. Thus, we tested the hypothesis that exposure to TiO2 NP affects sex hormone synthesis, oxidative stress, and antioxidant response in ovarian antral follicles in vitro. In addition, we characterized the NP internalization in the antral follicles over time to determine any association between NP internalization and effects on the antral follicle. Antral follicles were exposed to vehicle control or TiO2 NPs (5, 25, and 50 µg/ml) for 96 h. The lowest NP concentration (5 µg/ml) showed no internalization and no effects in antral follicles. The 25-µg/ml concentration had the highest internalization rate, leading to increased mRNA ratio of Bax to Bcl2. Interestingly, the highest concentration (50 µg/ml) showed lower internalization compared with the 25 µg/ml, with altered levels of steroidogenic involved genes and increased levels of progesterone and testosterone compared with control. In conclusion, these data suggest that TiO2 NP is internalized in antral follicles as the first step process in impairing follicle functions.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":\" \",\"pages\":\"31-42\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae155\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae155","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The effect of TiO2 nanoparticles on antral follicles is dependent on the nanoparticle internalization rate.
Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely produced metallic NPs due to commercial and industrial applications in products including food, cosmetics, paints, and plastics. TiO2 NPs are released into the environment posing health risks for humans and wildlife. Widespread uses have raised concerns about the potential toxicity of TiO2 NPs in reproduction. The ovary is an important endocrine organ responsible for sex steroid hormone production and folliculogenesis. NPs can reach the ovary, but limited information is available regarding NP toxicity and its effects on ovarian antral follicles. Thus, we tested the hypothesis that exposure to TiO2 NP affects sex hormone synthesis, oxidative stress, and antioxidant response in ovarian antral follicles in vitro. In addition, we characterized the NP internalization in the antral follicles over time to determine any association between NP internalization and effects on the antral follicle. Antral follicles were exposed to vehicle control or TiO2 NPs (5, 25, and 50 µg/ml) for 96 h. The lowest NP concentration (5 µg/ml) showed no internalization and no effects in antral follicles. The 25-µg/ml concentration had the highest internalization rate, leading to increased mRNA ratio of Bax to Bcl2. Interestingly, the highest concentration (50 µg/ml) showed lower internalization compared with the 25 µg/ml, with altered levels of steroidogenic involved genes and increased levels of progesterone and testosterone compared with control. In conclusion, these data suggest that TiO2 NP is internalized in antral follicles as the first step process in impairing follicle functions.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.