调节认知功能的神经调节技术:提高刺激精度和干预效果。

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-02-01 Epub Date: 2024-12-07 DOI:10.4103/NRR.NRR-D-24-00836
Hanwen Cao, Li Shang, Deheng Hu, Jianbing Huang, Yu Wang, Ming Li, Yilin Song, Qianzi Yang, Yan Luo, Ying Wang, Xinxia Cai, Juntao Liu
{"title":"调节认知功能的神经调节技术:提高刺激精度和干预效果。","authors":"Hanwen Cao, Li Shang, Deheng Hu, Jianbing Huang, Yu Wang, Ming Li, Yilin Song, Qianzi Yang, Yan Luo, Ying Wang, Xinxia Cai, Juntao Liu","doi":"10.4103/NRR.NRR-D-24-00836","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"491-501"},"PeriodicalIF":5.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects.\",\"authors\":\"Hanwen Cao, Li Shang, Deheng Hu, Jianbing Huang, Yu Wang, Ming Li, Yilin Song, Qianzi Yang, Yan Luo, Ying Wang, Xinxia Cai, Juntao Liu\",\"doi\":\"10.4103/NRR.NRR-D-24-00836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"491-501\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-00836\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00836","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经调节技术有效地干预认知功能,在航空航天、医学、生命科学和脑研究等领域具有相当的科学和实用价值。这些技术利用电刺激直接或间接地针对特定的大脑区域,调节神经活动并影响更广泛的大脑网络,从而调节认知功能。调节认知功能涉及对感知、学习和记忆、注意、空间认知和身体功能等方面的理解。为了加强认知调节在普通人群中的应用,本文回顾了最近发表在Web of Science上的文章,以评估有创性和非创性刺激方法在调节认知功能方面的进展和挑战。本文综述了认知干预的各种神经调节技术,包括深部脑刺激、迷走神经刺激和使用微电极阵列的侵入性方法。讨论的非侵入性技术包括经颅磁刺激、经颅直流电刺激、经颅交流电刺激、经皮穴位电刺激和激活深部目标的时间干扰刺激。有创性刺激方法是研究神经系统疾病发病机制的理想方法,但往往造成较大的创伤,在认知功能调节方面的研究较少。非侵入性方法,特别是较新的经颅刺激技术,更温和,更适合调节一般人群的认知功能。这些包括使用穴位的经皮穴位电刺激和激活深层目标的时间干扰方法。本文还讨论了神经调节技术当前的技术挑战和潜在的未来突破。建议将神经调节技术与神经检测方法相结合,以更好地评估其效果,提高无创神经调节的准确性。此外,研究闭环反馈神经调节方法被认为是未来发展的一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects.

Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信