Jonathan Zamudio-Flores , Daniel Cerqueda , Bryan Phillips-Farfán , Shaday Guerrero-Flores , Ana Fernanda Salinas-García , Esperanza Meléndez-Herrera , Nelly Sélem-Mojica , Anthony E. Kline , Naima Lajud
{"title":"中度儿童创伤性脑损伤后环境富集诱导的认知恢复与肠道微生物群和神经炎症有关。","authors":"Jonathan Zamudio-Flores , Daniel Cerqueda , Bryan Phillips-Farfán , Shaday Guerrero-Flores , Ana Fernanda Salinas-García , Esperanza Meléndez-Herrera , Nelly Sélem-Mojica , Anthony E. Kline , Naima Lajud","doi":"10.1016/j.expneurol.2024.115109","DOIUrl":null,"url":null,"abstract":"<div><div>Pediatric traumatic brain injury (TBI) is a significant health concern, yet access to rehabilitation therapies for children remains limited. Environmental enrichment (EE) is a preclinical model of neurorehabilitation that promotes behavioral recovery and reduces neuroinflammation after TBI. While the gut microbiota has recently emerged as a potential therapeutic target for treating TBI sequelae in adults, its role in recovery after pediatric TBI remains unclear. Therefore, our aim was to assess the effect of EE on gut microbiota and its correlation with cognition as well as microglial morphology in a preclinical model of pediatric TBI. Male rats underwent a controlled cortical impact of moderate severity or sham injury at postnatal day 21 and were then randomly assigned to either EE or standard (STD) housing. Cognition was evaluated using the Morris water maze (MWM) on post-injury days 14–19. Microglial morphology and caecum microbiota was characterized on post-injury day 21. Cognitive deficits and increased microglial activation in the ipsilateral cortex were observed in the STD-housed TBI rats but not those in EE. TBI decreased microbiota α-diversity, while PERMANOVA analysis showed that both TBI and EE modified microbiota β-diversity. Furthermore, regression models indicated that microglial morphology in the ipsilateral cortex and <em>Lactobacillus reuteri</em> predicted behavioral outcomes, while <em>Prevotellaceae NK3B31</em> was associated with microglial morphology. The data suggest that EE mitigates TBI-induced alterations in gut microbiota and that there is a complex interplay between EE, microbiota and microglial morphology that predicts behavioral recovery in pediatric rats.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"385 ","pages":"Article 115109"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental enrichment-induced cognitive recovery after a moderate pediatric traumatic brain injury is associated with the gut microbiota and neuroinflammation\",\"authors\":\"Jonathan Zamudio-Flores , Daniel Cerqueda , Bryan Phillips-Farfán , Shaday Guerrero-Flores , Ana Fernanda Salinas-García , Esperanza Meléndez-Herrera , Nelly Sélem-Mojica , Anthony E. Kline , Naima Lajud\",\"doi\":\"10.1016/j.expneurol.2024.115109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pediatric traumatic brain injury (TBI) is a significant health concern, yet access to rehabilitation therapies for children remains limited. Environmental enrichment (EE) is a preclinical model of neurorehabilitation that promotes behavioral recovery and reduces neuroinflammation after TBI. While the gut microbiota has recently emerged as a potential therapeutic target for treating TBI sequelae in adults, its role in recovery after pediatric TBI remains unclear. Therefore, our aim was to assess the effect of EE on gut microbiota and its correlation with cognition as well as microglial morphology in a preclinical model of pediatric TBI. Male rats underwent a controlled cortical impact of moderate severity or sham injury at postnatal day 21 and were then randomly assigned to either EE or standard (STD) housing. Cognition was evaluated using the Morris water maze (MWM) on post-injury days 14–19. Microglial morphology and caecum microbiota was characterized on post-injury day 21. Cognitive deficits and increased microglial activation in the ipsilateral cortex were observed in the STD-housed TBI rats but not those in EE. TBI decreased microbiota α-diversity, while PERMANOVA analysis showed that both TBI and EE modified microbiota β-diversity. Furthermore, regression models indicated that microglial morphology in the ipsilateral cortex and <em>Lactobacillus reuteri</em> predicted behavioral outcomes, while <em>Prevotellaceae NK3B31</em> was associated with microglial morphology. The data suggest that EE mitigates TBI-induced alterations in gut microbiota and that there is a complex interplay between EE, microbiota and microglial morphology that predicts behavioral recovery in pediatric rats.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"385 \",\"pages\":\"Article 115109\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624004357\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624004357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Environmental enrichment-induced cognitive recovery after a moderate pediatric traumatic brain injury is associated with the gut microbiota and neuroinflammation
Pediatric traumatic brain injury (TBI) is a significant health concern, yet access to rehabilitation therapies for children remains limited. Environmental enrichment (EE) is a preclinical model of neurorehabilitation that promotes behavioral recovery and reduces neuroinflammation after TBI. While the gut microbiota has recently emerged as a potential therapeutic target for treating TBI sequelae in adults, its role in recovery after pediatric TBI remains unclear. Therefore, our aim was to assess the effect of EE on gut microbiota and its correlation with cognition as well as microglial morphology in a preclinical model of pediatric TBI. Male rats underwent a controlled cortical impact of moderate severity or sham injury at postnatal day 21 and were then randomly assigned to either EE or standard (STD) housing. Cognition was evaluated using the Morris water maze (MWM) on post-injury days 14–19. Microglial morphology and caecum microbiota was characterized on post-injury day 21. Cognitive deficits and increased microglial activation in the ipsilateral cortex were observed in the STD-housed TBI rats but not those in EE. TBI decreased microbiota α-diversity, while PERMANOVA analysis showed that both TBI and EE modified microbiota β-diversity. Furthermore, regression models indicated that microglial morphology in the ipsilateral cortex and Lactobacillus reuteri predicted behavioral outcomes, while Prevotellaceae NK3B31 was associated with microglial morphology. The data suggest that EE mitigates TBI-induced alterations in gut microbiota and that there is a complex interplay between EE, microbiota and microglial morphology that predicts behavioral recovery in pediatric rats.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.