哥伦比亚亚马逊地区农村太阳辐照数据源评价与预报模型

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luis Eduardo Ordoñez Palacios;Víctor Andrés Bucheli Guerrero;Eduardo Francisco Caicedo Bravo
{"title":"哥伦比亚亚马逊地区农村太阳辐照数据源评价与预报模型","authors":"Luis Eduardo Ordoñez Palacios;Víctor Andrés Bucheli Guerrero;Eduardo Francisco Caicedo Bravo","doi":"10.1109/TLA.2024.10789635","DOIUrl":null,"url":null,"abstract":"Despite global efforts to adopt renewable energy, many remote regions still lack reliable electrical services. Addressing this requires a thorough analysis of solar resource data to identify viable solutions for these underserved areas. We evaluate the error in solar radiation data from a satellite image-based Random Forest (satellite RF) model by using data from IDEAM meteorological stations and NASA sources. By rigorously comparing these datasets, we aim to assess the reliability of predictive sources of solar radiation in the Amazon region. The results help establish confidence in various data sources, essential for utilizing estimated solar energy data in renewable energy research. We compared the data using the Relative Root Mean Squared Error (Relative RMSE). On the one hand, the relative RMSE between NASA and IDEAM ranges from 6.86% to 20.93%. On the other hand, the error between satellite RF model and IDEAM fluctuates between 6.56% and 12.33%. Similarly, the error between satellite RF model and NASA ranges from 4.80% to 15.27%. The findings indicate that the error in NASA data is higher compared to the error in satellite RF model data when benchmarked against IDEAM. Despite the limited number of meteorological stations and a maximum error of 20.93% between the two predictive data sources compared to ground-based observed data, we consider it reliable to use estimated solar radiation data for developing effective renewable energy solutions in remote locations.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"22 12","pages":"1019-1025"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10789635","citationCount":"0","resultStr":"{\"title\":\"Assessment of Solar Irradiation Data Sources and Prediction Models for Rural Villages in the Colombian Amazon Region\",\"authors\":\"Luis Eduardo Ordoñez Palacios;Víctor Andrés Bucheli Guerrero;Eduardo Francisco Caicedo Bravo\",\"doi\":\"10.1109/TLA.2024.10789635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite global efforts to adopt renewable energy, many remote regions still lack reliable electrical services. Addressing this requires a thorough analysis of solar resource data to identify viable solutions for these underserved areas. We evaluate the error in solar radiation data from a satellite image-based Random Forest (satellite RF) model by using data from IDEAM meteorological stations and NASA sources. By rigorously comparing these datasets, we aim to assess the reliability of predictive sources of solar radiation in the Amazon region. The results help establish confidence in various data sources, essential for utilizing estimated solar energy data in renewable energy research. We compared the data using the Relative Root Mean Squared Error (Relative RMSE). On the one hand, the relative RMSE between NASA and IDEAM ranges from 6.86% to 20.93%. On the other hand, the error between satellite RF model and IDEAM fluctuates between 6.56% and 12.33%. Similarly, the error between satellite RF model and NASA ranges from 4.80% to 15.27%. The findings indicate that the error in NASA data is higher compared to the error in satellite RF model data when benchmarked against IDEAM. Despite the limited number of meteorological stations and a maximum error of 20.93% between the two predictive data sources compared to ground-based observed data, we consider it reliable to use estimated solar radiation data for developing effective renewable energy solutions in remote locations.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"22 12\",\"pages\":\"1019-1025\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10789635\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10789635/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10789635/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

尽管全球都在努力采用可再生能源,但许多偏远地区仍然缺乏可靠的电力服务。解决这个问题需要对太阳能资源数据进行彻底的分析,以确定这些服务不足地区的可行解决方案。我们利用IDEAM气象站和NASA的数据,评估了基于卫星图像的随机森林(Random Forest, satellite RF)模型的太阳辐射数据误差。通过严格比较这些数据集,我们旨在评估亚马逊地区太阳辐射预测源的可靠性。结果有助于建立对各种数据源的信心,这对于在可再生能源研究中利用估计的太阳能数据至关重要。我们使用相对均方根误差(Relative RMSE)比较数据。一方面,NASA与IDEAM的相对RMSE在6.86% ~ 20.93%之间。另一方面,卫星射频模型与IDEAM模型的误差在6.56% ~ 12.33%之间波动。同样,卫星射频模型与NASA的误差在4.80% ~ 15.27%之间。研究结果表明,当以IDEAM为基准时,NASA数据的误差高于卫星RF模型数据的误差。尽管气象站数量有限,与地面观测数据相比,两种预测数据源之间的最大误差为20.93%,但我们认为使用估计的太阳辐射数据在偏远地区开发有效的可再生能源解决方案是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Solar Irradiation Data Sources and Prediction Models for Rural Villages in the Colombian Amazon Region
Despite global efforts to adopt renewable energy, many remote regions still lack reliable electrical services. Addressing this requires a thorough analysis of solar resource data to identify viable solutions for these underserved areas. We evaluate the error in solar radiation data from a satellite image-based Random Forest (satellite RF) model by using data from IDEAM meteorological stations and NASA sources. By rigorously comparing these datasets, we aim to assess the reliability of predictive sources of solar radiation in the Amazon region. The results help establish confidence in various data sources, essential for utilizing estimated solar energy data in renewable energy research. We compared the data using the Relative Root Mean Squared Error (Relative RMSE). On the one hand, the relative RMSE between NASA and IDEAM ranges from 6.86% to 20.93%. On the other hand, the error between satellite RF model and IDEAM fluctuates between 6.56% and 12.33%. Similarly, the error between satellite RF model and NASA ranges from 4.80% to 15.27%. The findings indicate that the error in NASA data is higher compared to the error in satellite RF model data when benchmarked against IDEAM. Despite the limited number of meteorological stations and a maximum error of 20.93% between the two predictive data sources compared to ground-based observed data, we consider it reliable to use estimated solar radiation data for developing effective renewable energy solutions in remote locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信