Yan Wang, Xiaolin Zhu, Tao Wei, Fei Xu, Trecia Kay-Ann Williams, Helin Zhang
{"title":"基于实体的图像分析:利用陆地卫星图像绘制农村居民点的新策略","authors":"Yan Wang, Xiaolin Zhu, Tao Wei, Fei Xu, Trecia Kay-Ann Williams, Helin Zhang","doi":"10.1016/j.rse.2024.114549","DOIUrl":null,"url":null,"abstract":"Accurate and timely mapping of rural settlements using medium-resolution satellite imagery, such as Landsat data, is crucial for evaluating rural infrastructure, estimating ecological service values, assessing the quality of life for rural populations, and promoting sustainable rural development. Current mapping techniques, including pixel-based and object-based classifications, primarily focus on identifying artificial surfaces, often failing to capture the complete spatial footprint of rural settlements. These settlements consist of diverse land cover elements, such as houses, roads, agricultural buildings, ponds, parks, and woodlands, which together form entities with distinct local characteristics. To address this limitation, we introduce a novel classification strategy: Entity-Based Image Analysis (EBIA). Inspired by cognitive principles of human visual perception, EBIA groups related land cover elements and differentiates settlements from their background. The key innovation of EBIA lies in its ability to incorporate semantic features within rural settlements, transforming pixel-level land cover classification results (Phase 1) into entity-level settlement mapping results (Phase 2). Our results demonstrate that EBIA effectively maps the comprehensive footprint of rural settlement entities, achieving F1 scores ranging from 0.79 to 0.88 across five globally selected experimental areas. Furthermore, EBIA can be utilized to monitor changes in rural settlements using long-term Landsat imagery. As a new classification strategy, EBIA holds potential for mapping other geographic entities.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"1 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entity-based image analysis: A new strategy to map rural settlements from Landsat images\",\"authors\":\"Yan Wang, Xiaolin Zhu, Tao Wei, Fei Xu, Trecia Kay-Ann Williams, Helin Zhang\",\"doi\":\"10.1016/j.rse.2024.114549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and timely mapping of rural settlements using medium-resolution satellite imagery, such as Landsat data, is crucial for evaluating rural infrastructure, estimating ecological service values, assessing the quality of life for rural populations, and promoting sustainable rural development. Current mapping techniques, including pixel-based and object-based classifications, primarily focus on identifying artificial surfaces, often failing to capture the complete spatial footprint of rural settlements. These settlements consist of diverse land cover elements, such as houses, roads, agricultural buildings, ponds, parks, and woodlands, which together form entities with distinct local characteristics. To address this limitation, we introduce a novel classification strategy: Entity-Based Image Analysis (EBIA). Inspired by cognitive principles of human visual perception, EBIA groups related land cover elements and differentiates settlements from their background. The key innovation of EBIA lies in its ability to incorporate semantic features within rural settlements, transforming pixel-level land cover classification results (Phase 1) into entity-level settlement mapping results (Phase 2). Our results demonstrate that EBIA effectively maps the comprehensive footprint of rural settlement entities, achieving F1 scores ranging from 0.79 to 0.88 across five globally selected experimental areas. Furthermore, EBIA can be utilized to monitor changes in rural settlements using long-term Landsat imagery. As a new classification strategy, EBIA holds potential for mapping other geographic entities.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2024.114549\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114549","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Entity-based image analysis: A new strategy to map rural settlements from Landsat images
Accurate and timely mapping of rural settlements using medium-resolution satellite imagery, such as Landsat data, is crucial for evaluating rural infrastructure, estimating ecological service values, assessing the quality of life for rural populations, and promoting sustainable rural development. Current mapping techniques, including pixel-based and object-based classifications, primarily focus on identifying artificial surfaces, often failing to capture the complete spatial footprint of rural settlements. These settlements consist of diverse land cover elements, such as houses, roads, agricultural buildings, ponds, parks, and woodlands, which together form entities with distinct local characteristics. To address this limitation, we introduce a novel classification strategy: Entity-Based Image Analysis (EBIA). Inspired by cognitive principles of human visual perception, EBIA groups related land cover elements and differentiates settlements from their background. The key innovation of EBIA lies in its ability to incorporate semantic features within rural settlements, transforming pixel-level land cover classification results (Phase 1) into entity-level settlement mapping results (Phase 2). Our results demonstrate that EBIA effectively maps the comprehensive footprint of rural settlement entities, achieving F1 scores ranging from 0.79 to 0.88 across five globally selected experimental areas. Furthermore, EBIA can be utilized to monitor changes in rural settlements using long-term Landsat imagery. As a new classification strategy, EBIA holds potential for mapping other geographic entities.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.