DRBD18在布鲁氏锥虫中作为转录特异性RNA编辑辅助因子。

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2025-01-22 DOI:10.1261/rna.080295.124
Parul Pandey, Katherine Wackowski, Ashutosh P Dubey, Laurie K Read
{"title":"DRBD18在布鲁氏锥虫中作为转录特异性RNA编辑辅助因子。","authors":"Parul Pandey, Katherine Wackowski, Ashutosh P Dubey, Laurie K Read","doi":"10.1261/rna.080295.124","DOIUrl":null,"url":null,"abstract":"<p><p>Uridine insertion/deletion (U-indel) RNA editing of mitochondrial transcripts is a posttranscriptional modification in kinetoplastid organisms, resulting in the generation of mature mRNAs from cryptic precursors. This RNA editing process involves a multiprotein complex holoenzyme and multiple accessory factors. Recent investigations have highlighted the pivotal involvement of accessory RNA-binding proteins (RBPs) in modulating RNA editing in <i>Trypanosoma brucei</i>, often in a transcript-specific manner. DRBD18 is a multifunctional RBP that reportedly impacts the stability, processing, export, and translation of nuclear-encoded mRNAs. However, mass spectrometry studies report DRBD18-RESC interactions, prompting us to investigate its role in mitochondrial U-indel RNA editing. In this study, we demonstrate the specific and RNase-sensitive interaction of DRBD18 with multiple RESC factors. Depletion of DRBD18 through RNA interference in procyclic form <i>T. brucei</i> leads to a significant reduction in the levels of edited A6 and COIII mitochondrial transcripts, whereas its overexpression causes a notable increase in the abundance of these edited mRNAs. RNA immunoprecipitation/qRT-PCR analysis indicates a direct role for DRBD18 in A6 and COIII mRNA editing. We also examined the impact of arginine methylation of DRBD18 in the editing process, revealing that the hypomethylated form of DRBD18, rather than the arginine-methylated version, is essential for promoting these editing events. In conclusion, our findings demonstrate that DRBD18 directly affects the editing of A6 and COIII mRNAs, with its function being modulated by its arginine methylation status, marking the first report of a mitochondrial function for this protein and identifying it as a newly characterized RNA editing auxiliary factor.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"245-257"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789491/pdf/","citationCount":"0","resultStr":"{\"title\":\"DRBD18 acts as a transcript-specific RNA editing auxiliary factor in <i>Trypanosoma brucei</i>.\",\"authors\":\"Parul Pandey, Katherine Wackowski, Ashutosh P Dubey, Laurie K Read\",\"doi\":\"10.1261/rna.080295.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uridine insertion/deletion (U-indel) RNA editing of mitochondrial transcripts is a posttranscriptional modification in kinetoplastid organisms, resulting in the generation of mature mRNAs from cryptic precursors. This RNA editing process involves a multiprotein complex holoenzyme and multiple accessory factors. Recent investigations have highlighted the pivotal involvement of accessory RNA-binding proteins (RBPs) in modulating RNA editing in <i>Trypanosoma brucei</i>, often in a transcript-specific manner. DRBD18 is a multifunctional RBP that reportedly impacts the stability, processing, export, and translation of nuclear-encoded mRNAs. However, mass spectrometry studies report DRBD18-RESC interactions, prompting us to investigate its role in mitochondrial U-indel RNA editing. In this study, we demonstrate the specific and RNase-sensitive interaction of DRBD18 with multiple RESC factors. Depletion of DRBD18 through RNA interference in procyclic form <i>T. brucei</i> leads to a significant reduction in the levels of edited A6 and COIII mitochondrial transcripts, whereas its overexpression causes a notable increase in the abundance of these edited mRNAs. RNA immunoprecipitation/qRT-PCR analysis indicates a direct role for DRBD18 in A6 and COIII mRNA editing. We also examined the impact of arginine methylation of DRBD18 in the editing process, revealing that the hypomethylated form of DRBD18, rather than the arginine-methylated version, is essential for promoting these editing events. In conclusion, our findings demonstrate that DRBD18 directly affects the editing of A6 and COIII mRNAs, with its function being modulated by its arginine methylation status, marking the first report of a mitochondrial function for this protein and identifying it as a newly characterized RNA editing auxiliary factor.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"245-257\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080295.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080295.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体转录物的尿苷插入/缺失(U-indel) RNA编辑是着丝质体生物的转录后修饰,导致从隐性前体产生成熟mrna。这种RNA编辑过程涉及一个多蛋白质复合物、全酶和多个辅助因子。最近的研究强调了辅助RNA结合蛋白(rbp)在调节布鲁氏体RNA编辑中的关键参与,通常以转录特异性的方式。据报道,DRBD18是一种多功能RBP,影响核编码mrna的稳定性、加工、输出和翻译。然而,质谱研究报告了DRBD18-RESC相互作用,促使我们研究其在线粒体U-indel RNA编辑中的作用。在这项研究中,我们证明了DRBD18与多个RESC因子的特异性和rnase敏感的相互作用。通过对原环型布氏体的RNA干扰,DRBD18的消耗导致编辑过的A6和COIII线粒体转录物水平显著降低,而其过表达导致这些编辑过的mrna丰度显著增加。RNA免疫沉淀/qRT-PCR分析表明DRBD18在A6和COIII mRNA编辑中起直接作用。我们还研究了DRBD18精氨酸甲基化在编辑过程中的影响,揭示了DRBD18的低甲基化形式,而不是精氨酸甲基化形式,对促进这些编辑事件至关重要。总之,我们的研究结果表明,DRBD18直接影响A6和COIII mrna的编辑,其功能受其精氨酸甲基化状态的调节,这标志着该蛋白线粒体功能的首次报道,并将其确定为新发现的RNA编辑辅助因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRBD18 acts as a transcript-specific RNA editing auxiliary factor in Trypanosoma brucei.

Uridine insertion/deletion (U-indel) RNA editing of mitochondrial transcripts is a posttranscriptional modification in kinetoplastid organisms, resulting in the generation of mature mRNAs from cryptic precursors. This RNA editing process involves a multiprotein complex holoenzyme and multiple accessory factors. Recent investigations have highlighted the pivotal involvement of accessory RNA-binding proteins (RBPs) in modulating RNA editing in Trypanosoma brucei, often in a transcript-specific manner. DRBD18 is a multifunctional RBP that reportedly impacts the stability, processing, export, and translation of nuclear-encoded mRNAs. However, mass spectrometry studies report DRBD18-RESC interactions, prompting us to investigate its role in mitochondrial U-indel RNA editing. In this study, we demonstrate the specific and RNase-sensitive interaction of DRBD18 with multiple RESC factors. Depletion of DRBD18 through RNA interference in procyclic form T. brucei leads to a significant reduction in the levels of edited A6 and COIII mitochondrial transcripts, whereas its overexpression causes a notable increase in the abundance of these edited mRNAs. RNA immunoprecipitation/qRT-PCR analysis indicates a direct role for DRBD18 in A6 and COIII mRNA editing. We also examined the impact of arginine methylation of DRBD18 in the editing process, revealing that the hypomethylated form of DRBD18, rather than the arginine-methylated version, is essential for promoting these editing events. In conclusion, our findings demonstrate that DRBD18 directly affects the editing of A6 and COIII mRNAs, with its function being modulated by its arginine methylation status, marking the first report of a mitochondrial function for this protein and identifying it as a newly characterized RNA editing auxiliary factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信