{"title":"组织因子促进TREX1蛋白稳定性以逃避胰腺导管腺癌的cGAS-STING先天免疫反应。","authors":"Yinyin Xue, Yue Wang, Zhiqiang Ren, Ker Yu","doi":"10.1038/s41388-024-03248-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref. 18], the functional role of TF in PDAC remains incompletely understood. We investigated the relationship between TF and the innate STING pathway. We found that patients with TF-overexpression had poor survival, very low levels of P-STING/P-TBK1, reduced amounts of ISGs and chemokines as well as low numbers of cytotoxic immunocytes in their tumor. In experimental models of mouse and human PDAC, tumor cell-intrinsic TF expression played a major role in silencing the cytosolic micronuclei sensing and cGAS-STING activation. This process involved a TREX1 exonuclease-dependent clearance of micronucleus-DNA accumulated in tumor cells. Treatment of tumors with TF-KO/shRNA or anti-TF antibody HuSC1-39 (parent antibody of MRG004A) triggered a rapid and proteasome-dependent degradation of TREX1 thereby restoring the STING/TBK1 cascade phosphorylation. TF-inhibition therapy promoted a robust STING/IRF3-dependent IFN/CCL5/CXCL9-11 production, immune effector cell infiltration and antitumor efficacy. Moreover, in the PBMC and cancer cell co-culture, TF-inhibition synergized with a STING agonist compound. A covalently conjugated TF antibody-STING agonist ADC strongly increased the efficacy of tumor-targeted STING agonism on chemokine secretion and tumor inhibition in vitro and in vivo. Thus, TF-inhibition reshapes an \"immune hot\" tumor environment. TF-targeted therapy warrants clinical investigation as a single agent or in combination with immunotherapy for treating TF-positive PDAC and TNBC.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue factor promotes TREX1 protein stability to evade cGAS-STING innate immune response in pancreatic ductal adenocarcinoma.\",\"authors\":\"Yinyin Xue, Yue Wang, Zhiqiang Ren, Ker Yu\",\"doi\":\"10.1038/s41388-024-03248-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref. 18], the functional role of TF in PDAC remains incompletely understood. We investigated the relationship between TF and the innate STING pathway. We found that patients with TF-overexpression had poor survival, very low levels of P-STING/P-TBK1, reduced amounts of ISGs and chemokines as well as low numbers of cytotoxic immunocytes in their tumor. In experimental models of mouse and human PDAC, tumor cell-intrinsic TF expression played a major role in silencing the cytosolic micronuclei sensing and cGAS-STING activation. This process involved a TREX1 exonuclease-dependent clearance of micronucleus-DNA accumulated in tumor cells. Treatment of tumors with TF-KO/shRNA or anti-TF antibody HuSC1-39 (parent antibody of MRG004A) triggered a rapid and proteasome-dependent degradation of TREX1 thereby restoring the STING/TBK1 cascade phosphorylation. TF-inhibition therapy promoted a robust STING/IRF3-dependent IFN/CCL5/CXCL9-11 production, immune effector cell infiltration and antitumor efficacy. Moreover, in the PBMC and cancer cell co-culture, TF-inhibition synergized with a STING agonist compound. A covalently conjugated TF antibody-STING agonist ADC strongly increased the efficacy of tumor-targeted STING agonism on chemokine secretion and tumor inhibition in vitro and in vivo. Thus, TF-inhibition reshapes an \\\"immune hot\\\" tumor environment. TF-targeted therapy warrants clinical investigation as a single agent or in combination with immunotherapy for treating TF-positive PDAC and TNBC.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-024-03248-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03248-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tissue factor promotes TREX1 protein stability to evade cGAS-STING innate immune response in pancreatic ductal adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref. 18], the functional role of TF in PDAC remains incompletely understood. We investigated the relationship between TF and the innate STING pathway. We found that patients with TF-overexpression had poor survival, very low levels of P-STING/P-TBK1, reduced amounts of ISGs and chemokines as well as low numbers of cytotoxic immunocytes in their tumor. In experimental models of mouse and human PDAC, tumor cell-intrinsic TF expression played a major role in silencing the cytosolic micronuclei sensing and cGAS-STING activation. This process involved a TREX1 exonuclease-dependent clearance of micronucleus-DNA accumulated in tumor cells. Treatment of tumors with TF-KO/shRNA or anti-TF antibody HuSC1-39 (parent antibody of MRG004A) triggered a rapid and proteasome-dependent degradation of TREX1 thereby restoring the STING/TBK1 cascade phosphorylation. TF-inhibition therapy promoted a robust STING/IRF3-dependent IFN/CCL5/CXCL9-11 production, immune effector cell infiltration and antitumor efficacy. Moreover, in the PBMC and cancer cell co-culture, TF-inhibition synergized with a STING agonist compound. A covalently conjugated TF antibody-STING agonist ADC strongly increased the efficacy of tumor-targeted STING agonism on chemokine secretion and tumor inhibition in vitro and in vivo. Thus, TF-inhibition reshapes an "immune hot" tumor environment. TF-targeted therapy warrants clinical investigation as a single agent or in combination with immunotherapy for treating TF-positive PDAC and TNBC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.