利用心电信号自动预测心源性猝死的系统综述。

IF 2.3 4区 医学 Q3 BIOPHYSICS
Preeti P Ghasad, Jagath V S Vegivada, Vipin M Kamble, Ankit A Bhurane, Nikhil Santosh, Manish Sharma, Ru-San Tan, U Rajendra Acharya
{"title":"利用心电信号自动预测心源性猝死的系统综述。","authors":"Preeti P Ghasad, Jagath V S Vegivada, Vipin M Kamble, Ankit A Bhurane, Nikhil Santosh, Manish Sharma, Ru-San Tan, U Rajendra Acharya","doi":"10.1088/1361-6579/ad9ce5","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.<i>Results</i>. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.<i>Conclusions</i>. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of automated prediction of sudden cardiac death using ECG signals.\",\"authors\":\"Preeti P Ghasad, Jagath V S Vegivada, Vipin M Kamble, Ankit A Bhurane, Nikhil Santosh, Manish Sharma, Ru-San Tan, U Rajendra Acharya\",\"doi\":\"10.1088/1361-6579/ad9ce5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background</i>. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.<i>Results</i>. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.<i>Conclusions</i>. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad9ce5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad9ce5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

心源性猝死(SCD)是一种危及生命的心脏事件,能够迅速夺去生命。研究人员已经设计了许多模型,旨在通过结合不同的特征提取技术和分类器来自动预测scd。我们对2011年至2023年的研究出版物进行了严格的审查,特别关注SCD的自动预测,这是全球范围内日益增长的健康问题。在过去的二十年中,机器学习(ML)技术已经出现并发展为这一目的。值得注意的是,自2021年以来,深度学习(DL)技术也被纳入自动预测SCD。& # xD;本文献综述全面分析了用于预测SCD的ML和DL模型。该分析对心脏死亡的基本结构产生了有价值的见解,从ECG和HRV信号中提取相关特征,使用数据库,并评估分类器的性能。该综述对自动化SCD预测方法进行了简洁而彻底的研究,强调了当前的限制条件,并强调了进一步发展的必要性。它是一种宝贵的资源,为有抱负的SCD预测领域的学者提供了有价值的见解,并概述了潜在的研究方向。这些自动化方法已经证明了实现卓越预测准确度的潜力,达到了97%的水平,并且可以在30-70分钟的时间内预测SCD事件。尽管取得了这些有希望的成果,但对更高准确性和可靠性的追求仍在继续。虽然ML和DL方法已经显示出巨大的前景,但它们的性能与可用的训练数据量有着内在的联系。大多数预测模型依赖于小规模的数据库,这引起了人们对它们在现实场景中的适用性的担忧。此外,这些模型主要利用心电图和心率变异性信号,往往忽略了其他生理信号的潜在贡献。开发实时的、临床适用的模型也是进一步探索这一领域的关键途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of automated prediction of sudden cardiac death using ECG signals.

Background. Sudden cardiac death (SCD) stands as a life-threatening cardiac event capable of swiftly claiming lives. It ranks prominently among the leading causes of global mortality, contributing to approximately 10% of deaths worldwide. The timely anticipation of SCD holds the promise of immediate life-saving interventions, such as cardiopulmonary resuscitation. However, recent strides in the realms of deep learning (DL), machine learning (ML), and artificial intelligence have ushered in fresh opportunities for the automation of SCD prediction using physiological signals. Researchers have devised numerous models to automatically predict SCD using a combination of diverse feature extraction techniques and classifiers. Methods: We conducted a thorough review of research publications ranging from 2011 to 2023, with a specific focus on the automated prediction of SCD. Traditionally, specialists utilize molecular biomarkers, symptoms, and 12-lead ECG recordings for SCD prediction. However, continuous patient monitoring by experts is impractical, and only a fraction of patients seeks help after experiencing symptoms. However, over the past two decades, ML techniques have emerged and evolved for this purpose. Importantly, since 2021, the studies we have scrutinized delve into a diverse array of ML and DL algorithms, encompassing K-nearest neighbors, support vector machines, decision trees, random forest, Naive Bayes, and convolutional neural networks as classifiers.Results. This literature review presents a comprehensive analysis of ML and DL models employed in predicting SCD. The analysis provided valuable information on the fundamental structure of cardiac fatalities, extracting relevant characteristics from electrocardiogram (ECG) and heart rate variability (HRV) signals, using databases, and evaluating classifier performance. The review offers a succinct yet thorough examination of automated SCD prediction methodologies, emphasizing current constraints and underscoring the necessity for further advancements. It serves as a valuable resource, providing valuable insights and outlining potential research directions for aspiring scholars in the domain of SCD prediction.Conclusions. In recent years, researchers have made substantial strides in the prediction of SCD by leveraging openly accessible databases such as the MIT-BIH SCD Holter and Normal Sinus Rhythm, which contains extensive 24 h recordings of SCD patients. These sophisticated methodologies have previously demonstrated the potential to achieve remarkable accuracy, reaching levels as high as 97%, and can forecast SCD events with a lead time of 30-70 min. Despite these promising outcomes, the quest for even greater accuracy and reliability persists. ML and DL methodologies have shown great promise, their performance is intrinsically linked to the volume of training data available. Most predictive models rely on small-scale databases, raising concerns about their applicability in real-world scenarios. Furthermore, these models predominantly utilize ECG and HRV signals, often overlooking the potential contributions of other physiological signals. Developing real-time, clinically applicable models also represents a critical avenue for further exploration in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信