Bela Putra, M Surachman, I W A Darmawan, Achmad Fanindi, Diana Sawen, Rahmi Dianita, Irine Ike Praptiwi, Kostafina Sawo, Marselinus Hambakodu, Bambang Tj Hariadi, Bernadete B Koten, S Akhadiarto, Syamsu Bahar, Juniar Sirait, Jacob Nulik, Kiston Simanihuruk, Ruslan A Gopar, Suharlina
{"title":"评价金矿尾矿的植物修复策略:文献计量学和系统综述。","authors":"Bela Putra, M Surachman, I W A Darmawan, Achmad Fanindi, Diana Sawen, Rahmi Dianita, Irine Ike Praptiwi, Kostafina Sawo, Marselinus Hambakodu, Bambang Tj Hariadi, Bernadete B Koten, S Akhadiarto, Syamsu Bahar, Juniar Sirait, Jacob Nulik, Kiston Simanihuruk, Ruslan A Gopar, Suharlina","doi":"10.1007/s10653-024-02317-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.81% and significant contributions from countries like Indonesia, Malaysia, and South Africa. Key findings emphasize the variability in phytoremediation success based on plant species, site conditions, and remediation techniques. Prominent plants identified include vetiver grass, Siam weed, and water hyacinth, which demonstrate significant potential in heavy metal uptake and soil stabilization. The study also underscores the importance of optimizing plant-microbe interactions and employing site-specific approaches to enhance remediation efficiency. Future research opportunities are identified, focusing on genetic engineering of plants, field trials, and integration of advanced monitoring technologies. Overall, this comprehensive review highlights the promising potential of phytoremediation as a sustainable and effective strategy for managing gold mine tailings, advocating for continued research and policy support to advance this green technology in environmental management.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"12"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing phytoremediation strategies for gold mine tailings: a bibliometric and systemic review.\",\"authors\":\"Bela Putra, M Surachman, I W A Darmawan, Achmad Fanindi, Diana Sawen, Rahmi Dianita, Irine Ike Praptiwi, Kostafina Sawo, Marselinus Hambakodu, Bambang Tj Hariadi, Bernadete B Koten, S Akhadiarto, Syamsu Bahar, Juniar Sirait, Jacob Nulik, Kiston Simanihuruk, Ruslan A Gopar, Suharlina\",\"doi\":\"10.1007/s10653-024-02317-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.81% and significant contributions from countries like Indonesia, Malaysia, and South Africa. Key findings emphasize the variability in phytoremediation success based on plant species, site conditions, and remediation techniques. Prominent plants identified include vetiver grass, Siam weed, and water hyacinth, which demonstrate significant potential in heavy metal uptake and soil stabilization. The study also underscores the importance of optimizing plant-microbe interactions and employing site-specific approaches to enhance remediation efficiency. Future research opportunities are identified, focusing on genetic engineering of plants, field trials, and integration of advanced monitoring technologies. Overall, this comprehensive review highlights the promising potential of phytoremediation as a sustainable and effective strategy for managing gold mine tailings, advocating for continued research and policy support to advance this green technology in environmental management.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 1\",\"pages\":\"12\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02317-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02317-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Assessing phytoremediation strategies for gold mine tailings: a bibliometric and systemic review.
This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.81% and significant contributions from countries like Indonesia, Malaysia, and South Africa. Key findings emphasize the variability in phytoremediation success based on plant species, site conditions, and remediation techniques. Prominent plants identified include vetiver grass, Siam weed, and water hyacinth, which demonstrate significant potential in heavy metal uptake and soil stabilization. The study also underscores the importance of optimizing plant-microbe interactions and employing site-specific approaches to enhance remediation efficiency. Future research opportunities are identified, focusing on genetic engineering of plants, field trials, and integration of advanced monitoring technologies. Overall, this comprehensive review highlights the promising potential of phytoremediation as a sustainable and effective strategy for managing gold mine tailings, advocating for continued research and policy support to advance this green technology in environmental management.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.