结核病中的人工智能:疾病控制的新盟友。

IF 2.3 Q2 RESPIRATORY SYSTEM
Breathe Pub Date : 2024-12-10 eCollection Date: 2024-10-01 DOI:10.1183/20734735.0056-2024
Mairi McClean, Traian Constantin Panciu, Christoph Lange, Raquel Duarte, Fabian Theis
{"title":"结核病中的人工智能:疾病控制的新盟友。","authors":"Mairi McClean, Traian Constantin Panciu, Christoph Lange, Raquel Duarte, Fabian Theis","doi":"10.1183/20734735.0056-2024","DOIUrl":null,"url":null,"abstract":"<p><p>The challenges to effective tuberculosis (TB) disease control are considerable, and the current global targets for reductions in disease burden seem unattainable. The combination of complex pathophysiology and technical limitations results in difficulties in achieving consistent, reliable diagnoses, and long treatment regimens imply serious physiological and socioeconomic consequences for patients. Artificial intelligence (AI) applications in healthcare have significantly improved patient care regarding diagnostics, treatment and basic research. However, their success relies on infrastructures prioritising comprehensive data generation and collaborative research environments to foster stakeholder engagement. This viewpoint article briefly outlines the current and potential applications of advanced AI models in global TB control and the considerations and implications of adopting these tools within the public health community.</p>","PeriodicalId":9292,"journal":{"name":"Breathe","volume":"20 3","pages":"240056"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629172/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in tuberculosis: a new ally in disease control.\",\"authors\":\"Mairi McClean, Traian Constantin Panciu, Christoph Lange, Raquel Duarte, Fabian Theis\",\"doi\":\"10.1183/20734735.0056-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The challenges to effective tuberculosis (TB) disease control are considerable, and the current global targets for reductions in disease burden seem unattainable. The combination of complex pathophysiology and technical limitations results in difficulties in achieving consistent, reliable diagnoses, and long treatment regimens imply serious physiological and socioeconomic consequences for patients. Artificial intelligence (AI) applications in healthcare have significantly improved patient care regarding diagnostics, treatment and basic research. However, their success relies on infrastructures prioritising comprehensive data generation and collaborative research environments to foster stakeholder engagement. This viewpoint article briefly outlines the current and potential applications of advanced AI models in global TB control and the considerations and implications of adopting these tools within the public health community.</p>\",\"PeriodicalId\":9292,\"journal\":{\"name\":\"Breathe\",\"volume\":\"20 3\",\"pages\":\"240056\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629172/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breathe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1183/20734735.0056-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breathe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/20734735.0056-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

有效控制结核病面临的挑战相当大,目前减少疾病负担的全球目标似乎无法实现。复杂的病理生理学和技术限制的结合导致难以获得一致、可靠的诊断,长期的治疗方案意味着对患者产生严重的生理和社会经济后果。人工智能(AI)在医疗保健领域的应用显著改善了患者在诊断、治疗和基础研究方面的护理。然而,它们的成功依赖于优先考虑综合数据生成和协作研究环境的基础设施,以促进利益相关者的参与。这篇观点文章简要概述了先进人工智能模型在全球结核病控制中的当前和潜在应用,以及在公共卫生界采用这些工具的考虑和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in tuberculosis: a new ally in disease control.

The challenges to effective tuberculosis (TB) disease control are considerable, and the current global targets for reductions in disease burden seem unattainable. The combination of complex pathophysiology and technical limitations results in difficulties in achieving consistent, reliable diagnoses, and long treatment regimens imply serious physiological and socioeconomic consequences for patients. Artificial intelligence (AI) applications in healthcare have significantly improved patient care regarding diagnostics, treatment and basic research. However, their success relies on infrastructures prioritising comprehensive data generation and collaborative research environments to foster stakeholder engagement. This viewpoint article briefly outlines the current and potential applications of advanced AI models in global TB control and the considerations and implications of adopting these tools within the public health community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Breathe
Breathe RESPIRATORY SYSTEM-
CiteScore
2.90
自引率
5.00%
发文量
51
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信