理解表观遗传标记之间的关系及其在染色质状态稳健分配中的应用。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Leandro Murgas, Gianluca Pollastri, Erick Riquelme, Mauricio Sáez, Alberto J M Martin
{"title":"理解表观遗传标记之间的关系及其在染色质状态稳健分配中的应用。","authors":"Leandro Murgas, Gianluca Pollastri, Erick Riquelme, Mauricio Sáez, Alberto J M Martin","doi":"10.1093/bib/bbae638","DOIUrl":null,"url":null,"abstract":"<p><p>Structural changes of chromatin modulate access to DNA for the molecular machinery involved in the control of transcription. These changes are linked to variations in epigenetic marks that allow to classify chromatin in different functional states depending on the pattern of these histone marks. Importantly, alterations in chromatin states are known to be linked with various diseases, and their changes are known to explain processes such as cellular proliferation. For most of the available samples, there are not enough epigenomic data available to accurately determine chromatin states for the cells affected in each of them. This is mainly due to high costs of performing this type of experiments but also because of lack of a sufficient amount of sample or its degradation. In this work, we describe a cascade method based on a random forest algorithm to infer epigenetic marks, and by doing so, to identify relationships between different histone marks. Importantly, our approach also reduces the number of experimentally determined marks required to assign chromatin states. Moreover, in this work we have identified several relationships between patterns of different histone marks, which strengthens the evidence in favor of a redundant epigenetic code.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding relationships between epigenetic marks and their application to robust assignment of chromatin states.\",\"authors\":\"Leandro Murgas, Gianluca Pollastri, Erick Riquelme, Mauricio Sáez, Alberto J M Martin\",\"doi\":\"10.1093/bib/bbae638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural changes of chromatin modulate access to DNA for the molecular machinery involved in the control of transcription. These changes are linked to variations in epigenetic marks that allow to classify chromatin in different functional states depending on the pattern of these histone marks. Importantly, alterations in chromatin states are known to be linked with various diseases, and their changes are known to explain processes such as cellular proliferation. For most of the available samples, there are not enough epigenomic data available to accurately determine chromatin states for the cells affected in each of them. This is mainly due to high costs of performing this type of experiments but also because of lack of a sufficient amount of sample or its degradation. In this work, we describe a cascade method based on a random forest algorithm to infer epigenetic marks, and by doing so, to identify relationships between different histone marks. Importantly, our approach also reduces the number of experimentally determined marks required to assign chromatin states. Moreover, in this work we have identified several relationships between patterns of different histone marks, which strengthens the evidence in favor of a redundant epigenetic code.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae638\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

染色质的结构变化调节了参与转录控制的分子机制对DNA的访问。这些变化与表观遗传标记的变化有关,表观遗传标记允许根据这些组蛋白标记的模式对不同功能状态的染色质进行分类。重要的是,已知染色质状态的改变与各种疾病有关,并且已知它们的变化可以解释细胞增殖等过程。对于大多数可用的样本,没有足够的表观基因组数据来准确地确定每个样本中受影响细胞的染色质状态。这主要是由于进行这类实验的成本高,但也因为缺乏足够数量的样品或其降解。在这项工作中,我们描述了一种基于随机森林算法的级联方法来推断表观遗传标记,并通过这样做来识别不同组蛋白标记之间的关系。重要的是,我们的方法还减少了分配染色质状态所需的实验确定标记的数量。此外,在这项工作中,我们已经确定了不同组蛋白标记模式之间的几种关系,这加强了支持冗余表观遗传密码的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding relationships between epigenetic marks and their application to robust assignment of chromatin states.

Structural changes of chromatin modulate access to DNA for the molecular machinery involved in the control of transcription. These changes are linked to variations in epigenetic marks that allow to classify chromatin in different functional states depending on the pattern of these histone marks. Importantly, alterations in chromatin states are known to be linked with various diseases, and their changes are known to explain processes such as cellular proliferation. For most of the available samples, there are not enough epigenomic data available to accurately determine chromatin states for the cells affected in each of them. This is mainly due to high costs of performing this type of experiments but also because of lack of a sufficient amount of sample or its degradation. In this work, we describe a cascade method based on a random forest algorithm to infer epigenetic marks, and by doing so, to identify relationships between different histone marks. Importantly, our approach also reduces the number of experimentally determined marks required to assign chromatin states. Moreover, in this work we have identified several relationships between patterns of different histone marks, which strengthens the evidence in favor of a redundant epigenetic code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信