UPicker:一种用于低温电镜显微图的半监督粒子拾取变压器方法。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Chi Zhang, Yiran Cheng, Kaiwen Feng, Fa Zhang, Renmin Han, Jieqing Feng
{"title":"UPicker:一种用于低温电镜显微图的半监督粒子拾取变压器方法。","authors":"Chi Zhang, Yiran Cheng, Kaiwen Feng, Fa Zhang, Renmin Han, Jieqing Feng","doi":"10.1093/bib/bbae636","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic single particle picking is a critical step in the data processing pipeline of cryo-electron microscopy structure reconstruction. In recent years, several deep learning-based algorithms have been developed, demonstrating their potential to solve this challenge. However, current methods highly depend on manually labeled training data, which is labor-intensive and prone to biases especially for high-noise and low-contrast micrographs, resulting in suboptimal precision and recall. To address these problems, we propose UPicker, a semi-supervised transformer-based particle-picking method with a two-stage training process: unsupervised pretraining and supervised fine-tuning. During the unsupervised pretraining, an Adaptive Laplacian of Gaussian region proposal generator is proposed to obtain pseudo-labels from unlabeled data for initial feature learning. For the supervised fine-tuning, UPicker only needs a small amount of labeled data to achieve high accuracy in particle picking. To further enhance model performance, UPicker employs a contrastive denoising training strategy to reduce redundant detections and accelerate convergence, along with a hybrid data augmentation strategy to deal with limited labeled data. Comprehensive experiments on both simulated and experimental datasets demonstrate that UPicker outperforms state-of-the-art particle-picking methods in terms of accuracy and robustness while requiring fewer labeled data than other transformer-based models. Furthermore, ablation studies demonstrate the effectiveness and necessity of each component of UPicker. The source code and data are available at https://github.com/JachyLikeCoding/UPicker.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631311/pdf/","citationCount":"0","resultStr":"{\"title\":\"UPicker: a semi-supervised particle picking transformer method for cryo-EM micrographs.\",\"authors\":\"Chi Zhang, Yiran Cheng, Kaiwen Feng, Fa Zhang, Renmin Han, Jieqing Feng\",\"doi\":\"10.1093/bib/bbae636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic single particle picking is a critical step in the data processing pipeline of cryo-electron microscopy structure reconstruction. In recent years, several deep learning-based algorithms have been developed, demonstrating their potential to solve this challenge. However, current methods highly depend on manually labeled training data, which is labor-intensive and prone to biases especially for high-noise and low-contrast micrographs, resulting in suboptimal precision and recall. To address these problems, we propose UPicker, a semi-supervised transformer-based particle-picking method with a two-stage training process: unsupervised pretraining and supervised fine-tuning. During the unsupervised pretraining, an Adaptive Laplacian of Gaussian region proposal generator is proposed to obtain pseudo-labels from unlabeled data for initial feature learning. For the supervised fine-tuning, UPicker only needs a small amount of labeled data to achieve high accuracy in particle picking. To further enhance model performance, UPicker employs a contrastive denoising training strategy to reduce redundant detections and accelerate convergence, along with a hybrid data augmentation strategy to deal with limited labeled data. Comprehensive experiments on both simulated and experimental datasets demonstrate that UPicker outperforms state-of-the-art particle-picking methods in terms of accuracy and robustness while requiring fewer labeled data than other transformer-based models. Furthermore, ablation studies demonstrate the effectiveness and necessity of each component of UPicker. The source code and data are available at https://github.com/JachyLikeCoding/UPicker.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae636\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae636","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单粒子自动拾取是低温电镜结构重建数据处理流程中的关键步骤。近年来,一些基于深度学习的算法已经被开发出来,展示了它们解决这一挑战的潜力。然而,目前的方法高度依赖于人工标记的训练数据,这是劳动密集型的,容易产生偏差,特别是对于高噪声和低对比度的显微照片,导致精度和召回率不理想。为了解决这些问题,我们提出了UPicker,一种基于半监督变压器的粒子拾取方法,具有两阶段的训练过程:无监督预训练和监督微调。在无监督预训练中,提出了一种自适应高斯区域拉普拉斯建议生成器,从未标记的数据中获取伪标签进行初始特征学习。对于监督微调,UPicker只需要少量的标记数据就可以达到较高的粒子拾取精度。为了进一步提高模型性能,UPicker采用对比去噪训练策略来减少冗余检测并加速收敛,同时采用混合数据增强策略来处理有限的标记数据。在模拟和实验数据集上的综合实验表明,UPicker在准确性和鲁棒性方面优于最先进的颗粒拾取方法,同时比其他基于变压器的模型需要更少的标记数据。此外,烧蚀研究证明了UPicker各组成部分的有效性和必要性。源代码和数据可从https://github.com/JachyLikeCoding/UPicker获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UPicker: a semi-supervised particle picking transformer method for cryo-EM micrographs.

Automatic single particle picking is a critical step in the data processing pipeline of cryo-electron microscopy structure reconstruction. In recent years, several deep learning-based algorithms have been developed, demonstrating their potential to solve this challenge. However, current methods highly depend on manually labeled training data, which is labor-intensive and prone to biases especially for high-noise and low-contrast micrographs, resulting in suboptimal precision and recall. To address these problems, we propose UPicker, a semi-supervised transformer-based particle-picking method with a two-stage training process: unsupervised pretraining and supervised fine-tuning. During the unsupervised pretraining, an Adaptive Laplacian of Gaussian region proposal generator is proposed to obtain pseudo-labels from unlabeled data for initial feature learning. For the supervised fine-tuning, UPicker only needs a small amount of labeled data to achieve high accuracy in particle picking. To further enhance model performance, UPicker employs a contrastive denoising training strategy to reduce redundant detections and accelerate convergence, along with a hybrid data augmentation strategy to deal with limited labeled data. Comprehensive experiments on both simulated and experimental datasets demonstrate that UPicker outperforms state-of-the-art particle-picking methods in terms of accuracy and robustness while requiring fewer labeled data than other transformer-based models. Furthermore, ablation studies demonstrate the effectiveness and necessity of each component of UPicker. The source code and data are available at https://github.com/JachyLikeCoding/UPicker.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信