利用环状单链dna介导的基因组整合进行高效的非病毒免疫细胞工程

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Jiao Wang, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan, Hao Wu
{"title":"利用环状单链dna介导的基因组整合进行高效的非病毒免疫细胞工程","authors":"Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Jiao Wang, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan, Hao Wu","doi":"10.1038/s41587-024-02504-9","DOIUrl":null,"url":null,"abstract":"<p>The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"25 6 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration\",\"authors\":\"Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Jiao Wang, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan, Hao Wu\",\"doi\":\"10.1038/s41587-024-02504-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.</p>\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":\"25 6 1\",\"pages\":\"\"},\"PeriodicalIF\":33.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-024-02504-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02504-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用腺相关病毒(aav)作为同源定向修复(HDR)介导的基因组工程的供体受到安全问题、生产限制和包装限制的限制。非病毒靶向基因敲入主要依赖于双链DNA (dsDNA)和线性单链DNA (lssDNA)供体。众所周知,dsDNA具有低效率和高细胞毒性,而lssDNA对于规模化生产具有挑战性。在这项研究中,我们开发了一种非病毒基因组写入催化剂(GATALYST)系统,该系统允许生产高达约20千碱基的环状单链dna (cssdna)作为高效精确转基因整合的供体模板。cssDNA供体使诱导多能干细胞(iPSCs)的敲入效率高达70%,并提高了多种临床相关的原代免疫细胞类型和多种基因组位点的效率,这些基因位点与各种核酸酶编辑器系统的临床应用有关。cssDNA在嵌合抗原受体(CAR)-T和自然杀伤细胞(NK)中的高精度和高效率,提高了安全性,有效载荷灵活性和可扩展性,显示了未来基因组工程应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration

The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信