混合偏卡普托导数及其在双曲型偏分式微分方程中的应用

IF 2.5 2区 数学 Q1 MATHEMATICS
Rafał Kamocki, Cezary Obczyński
{"title":"混合偏卡普托导数及其在双曲型偏分式微分方程中的应用","authors":"Rafał Kamocki, Cezary Obczyński","doi":"10.1007/s13540-024-00358-1","DOIUrl":null,"url":null,"abstract":"<p>We propose an alternative definition of a mixed partial derivative in the Caputo sense for functions of two variables defined on the rectangle <span>\\(P=[0,a]\\times [0,b]\\)</span> (<span>\\(a&gt;0, b&gt;0\\)</span>). We give an integral representation of functions possessing such a derivative. Moreover, we study the existence and uniqueness of a solution, as well as the Ulam–Hyers type stability of a fractional counterpart of a nonlinear continuous Goursat-Darboux system described by the introduced Caputo derivative. This paper is a continuation of our paper [R. Kamocki, C. Obczyński, <i>On the single partial Caputo derivatives for functions of two variables</i>, Periodica Mathematica Hungarica 87(2), (2023), 324–339].</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a mixed partial Caputo derivative and its applications to a hyperbolic partial fractional differential equation\",\"authors\":\"Rafał Kamocki, Cezary Obczyński\",\"doi\":\"10.1007/s13540-024-00358-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose an alternative definition of a mixed partial derivative in the Caputo sense for functions of two variables defined on the rectangle <span>\\\\(P=[0,a]\\\\times [0,b]\\\\)</span> (<span>\\\\(a&gt;0, b&gt;0\\\\)</span>). We give an integral representation of functions possessing such a derivative. Moreover, we study the existence and uniqueness of a solution, as well as the Ulam–Hyers type stability of a fractional counterpart of a nonlinear continuous Goursat-Darboux system described by the introduced Caputo derivative. This paper is a continuation of our paper [R. Kamocki, C. Obczyński, <i>On the single partial Caputo derivatives for functions of two variables</i>, Periodica Mathematica Hungarica 87(2), (2023), 324–339].</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00358-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00358-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于在矩形\(P=[0,a]\times [0,b]\) (\(a>0, b>0\))上定义的两个变量的函数,我们提出了卡普托意义上的混合偏导数的另一种定义。我们给出具有这样一个导数的函数的积分表示。此外,我们还研究了由引入的Caputo导数所描述的非线性连续Goursat-Darboux系统的解的存在唯一性,以及分数阶系统的Ulam-Hyers型稳定性。这篇论文是我们的论文[R]的延续。Kamocki, C. Obczyński,关于二元函数的单偏Caputo导数,数学学报87(2),(2023),324-339。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a mixed partial Caputo derivative and its applications to a hyperbolic partial fractional differential equation

We propose an alternative definition of a mixed partial derivative in the Caputo sense for functions of two variables defined on the rectangle \(P=[0,a]\times [0,b]\) (\(a>0, b>0\)). We give an integral representation of functions possessing such a derivative. Moreover, we study the existence and uniqueness of a solution, as well as the Ulam–Hyers type stability of a fractional counterpart of a nonlinear continuous Goursat-Darboux system described by the introduced Caputo derivative. This paper is a continuation of our paper [R. Kamocki, C. Obczyński, On the single partial Caputo derivatives for functions of two variables, Periodica Mathematica Hungarica 87(2), (2023), 324–339].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信