{"title":"具有双宽带效应的xml - mimo系统结构OFDM调制","authors":"Wei Huang;Lizheng Xu;Haiyang Zhang;Caihong Kai;Chunguo Li;Yongming Huang","doi":"10.1109/TWC.2024.3509914","DOIUrl":null,"url":null,"abstract":"Extremely large-scale multiple-input multiple-output (XL-MIMO) wideband systems may exhibit the severe delay spread, due to its spatial- and frequency-wideband (dual-wideband) effects. The typical orthogonal frequency division multiplexing (OFDM) technology have to insert a larger number of cyclic prefix (CP) to overcome the inter-symbol interference (ISI) induced by delay spread. The additional CP overhead will counteract the improvement of spectral efficiency by the large antenna array. To address the issue, this paper proposes a structured OFDM (SOFDM) modulation approach to reduce the CP overhead for wideband XL-MIMO systems with dual-wideband effects. As the ability to perform SOFDM is affected by the antenna architecture, we study the modulation technique considering different antenna structures, including fully-digital, phase shifter-based hybrid array, and dynamic metasurface antenna (DMA) architectures. Specifically, we first provide a mathematical model to represent a near-field channel with dual wideband effects. Based on the channel model, we develop the SOFDM modulation and then propose a joint spatial precoding and frequency domain equalization scheme to maximize the system spectral efficiency, where the solutions of precoding/combining and equalization matrices are derived for the three types of antenna array architectures. Numerical simulations indicate that the proposed scheme can effectively deal with the dual-wideband effects and significantly improve the spectral efficiency with low CP overhead.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 2","pages":"1510-1525"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured OFDM Modulation for XL-MIMO System With Dual-Wideband Effects\",\"authors\":\"Wei Huang;Lizheng Xu;Haiyang Zhang;Caihong Kai;Chunguo Li;Yongming Huang\",\"doi\":\"10.1109/TWC.2024.3509914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extremely large-scale multiple-input multiple-output (XL-MIMO) wideband systems may exhibit the severe delay spread, due to its spatial- and frequency-wideband (dual-wideband) effects. The typical orthogonal frequency division multiplexing (OFDM) technology have to insert a larger number of cyclic prefix (CP) to overcome the inter-symbol interference (ISI) induced by delay spread. The additional CP overhead will counteract the improvement of spectral efficiency by the large antenna array. To address the issue, this paper proposes a structured OFDM (SOFDM) modulation approach to reduce the CP overhead for wideband XL-MIMO systems with dual-wideband effects. As the ability to perform SOFDM is affected by the antenna architecture, we study the modulation technique considering different antenna structures, including fully-digital, phase shifter-based hybrid array, and dynamic metasurface antenna (DMA) architectures. Specifically, we first provide a mathematical model to represent a near-field channel with dual wideband effects. Based on the channel model, we develop the SOFDM modulation and then propose a joint spatial precoding and frequency domain equalization scheme to maximize the system spectral efficiency, where the solutions of precoding/combining and equalization matrices are derived for the three types of antenna array architectures. Numerical simulations indicate that the proposed scheme can effectively deal with the dual-wideband effects and significantly improve the spectral efficiency with low CP overhead.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 2\",\"pages\":\"1510-1525\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791414/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10791414/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Structured OFDM Modulation for XL-MIMO System With Dual-Wideband Effects
Extremely large-scale multiple-input multiple-output (XL-MIMO) wideband systems may exhibit the severe delay spread, due to its spatial- and frequency-wideband (dual-wideband) effects. The typical orthogonal frequency division multiplexing (OFDM) technology have to insert a larger number of cyclic prefix (CP) to overcome the inter-symbol interference (ISI) induced by delay spread. The additional CP overhead will counteract the improvement of spectral efficiency by the large antenna array. To address the issue, this paper proposes a structured OFDM (SOFDM) modulation approach to reduce the CP overhead for wideband XL-MIMO systems with dual-wideband effects. As the ability to perform SOFDM is affected by the antenna architecture, we study the modulation technique considering different antenna structures, including fully-digital, phase shifter-based hybrid array, and dynamic metasurface antenna (DMA) architectures. Specifically, we first provide a mathematical model to represent a near-field channel with dual wideband effects. Based on the channel model, we develop the SOFDM modulation and then propose a joint spatial precoding and frequency domain equalization scheme to maximize the system spectral efficiency, where the solutions of precoding/combining and equalization matrices are derived for the three types of antenna array architectures. Numerical simulations indicate that the proposed scheme can effectively deal with the dual-wideband effects and significantly improve the spectral efficiency with low CP overhead.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.