PMA2-Net:高光谱和多光谱图像多尺度轴向关注网络的逐步融合

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shunhui Wang;Yuebin Wang;Danfeng Hong;Liqiang Zhang
{"title":"PMA2-Net:高光谱和多光谱图像多尺度轴向关注网络的逐步融合","authors":"Shunhui Wang;Yuebin Wang;Danfeng Hong;Liqiang Zhang","doi":"10.1109/TGRS.2024.3514893","DOIUrl":null,"url":null,"abstract":"Integrating low-resolution hyperspectral images (LR-HSIs) with corresponding high-resolution multispectral images (HR-MSIs) for the reconstruction of HR-HSI using deep learning techniques represents a critical area of research. Although convolutional neural networks (CNNs) are widely used for HR-HSI reconstruction, their small receptive fields hinder effective global feature extraction, which limits their potential. Fusion methods that rely on traditional attention mechanisms also lack feature interaction, failing to integrate and harmonize feature information from hyperspectral image (HSI) and MSI effectively. To address these issues, this article develops a novel progressive fusion of multiscale axial attention network (PMA2-Net), which combines multiscale convolutions with axial attention (AA) and employs a progressive interaction approach to reconstruct high-resolution images. Specifically, PMA2-Net extracts the spatial and spectral information from HSI through spatial feature extraction (Spatial-FE) and spectral feature extraction (Spectral-FE). Concurrently, a feature injection module (FIM) is introduced, employing multiscale convolution to capture local features and integrating AA to enhance global feature association. Moreover, a progressive fusion module (PFM) is employed to enhance multidimensional feature collaboration and hierarchical integration. Extensive studies conducted using five significant HSI datasets verify the effectiveness of PMA2-Net, demonstrating its superior performance compared to current state-of-the-art (SOTA) fusion techniques.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-14"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PMA²-Net: Progressive Fusion of Multiscale Axial Attention Network for Hyperspectral and Multispectral Images\",\"authors\":\"Shunhui Wang;Yuebin Wang;Danfeng Hong;Liqiang Zhang\",\"doi\":\"10.1109/TGRS.2024.3514893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating low-resolution hyperspectral images (LR-HSIs) with corresponding high-resolution multispectral images (HR-MSIs) for the reconstruction of HR-HSI using deep learning techniques represents a critical area of research. Although convolutional neural networks (CNNs) are widely used for HR-HSI reconstruction, their small receptive fields hinder effective global feature extraction, which limits their potential. Fusion methods that rely on traditional attention mechanisms also lack feature interaction, failing to integrate and harmonize feature information from hyperspectral image (HSI) and MSI effectively. To address these issues, this article develops a novel progressive fusion of multiscale axial attention network (PMA2-Net), which combines multiscale convolutions with axial attention (AA) and employs a progressive interaction approach to reconstruct high-resolution images. Specifically, PMA2-Net extracts the spatial and spectral information from HSI through spatial feature extraction (Spatial-FE) and spectral feature extraction (Spectral-FE). Concurrently, a feature injection module (FIM) is introduced, employing multiscale convolution to capture local features and integrating AA to enhance global feature association. Moreover, a progressive fusion module (PFM) is employed to enhance multidimensional feature collaboration and hierarchical integration. Extensive studies conducted using five significant HSI datasets verify the effectiveness of PMA2-Net, demonstrating its superior performance compared to current state-of-the-art (SOTA) fusion techniques.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-14\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10789198/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10789198/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用深度学习技术将低分辨率高光谱图像(lr - hsi)与相应的高分辨率多光谱图像(hr - msi)进行整合以重建高分辨率高光谱图像是一个关键的研究领域。虽然卷积神经网络(cnn)被广泛用于HR-HSI重建,但其接收野小阻碍了有效的全局特征提取,限制了其潜力。基于传统注意机制的融合方法缺乏特征交互,无法有效整合和协调高光谱图像和微光谱图像的特征信息。为了解决这些问题,本文开发了一种新的多尺度轴向注意网络(PMA2-Net),该网络将多尺度卷积与轴向注意(AA)相结合,并采用渐进交互方法重建高分辨率图像。具体来说,PMA2-Net通过空间特征提取(spatial - fe)和光谱特征提取(spectral - fe)从HSI中提取空间和光谱信息。同时,引入特征注入模块(FIM),利用多尺度卷积捕获局部特征,集成AA增强全局特征关联。此外,采用渐进式融合模块(PFM)来增强多维特征协同和层次集成。利用5个重要的HSI数据集进行的广泛研究验证了PMA2-Net的有效性,证明了与当前最先进的(SOTA)融合技术相比,PMA2-Net具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMA²-Net: Progressive Fusion of Multiscale Axial Attention Network for Hyperspectral and Multispectral Images
Integrating low-resolution hyperspectral images (LR-HSIs) with corresponding high-resolution multispectral images (HR-MSIs) for the reconstruction of HR-HSI using deep learning techniques represents a critical area of research. Although convolutional neural networks (CNNs) are widely used for HR-HSI reconstruction, their small receptive fields hinder effective global feature extraction, which limits their potential. Fusion methods that rely on traditional attention mechanisms also lack feature interaction, failing to integrate and harmonize feature information from hyperspectral image (HSI) and MSI effectively. To address these issues, this article develops a novel progressive fusion of multiscale axial attention network (PMA2-Net), which combines multiscale convolutions with axial attention (AA) and employs a progressive interaction approach to reconstruct high-resolution images. Specifically, PMA2-Net extracts the spatial and spectral information from HSI through spatial feature extraction (Spatial-FE) and spectral feature extraction (Spectral-FE). Concurrently, a feature injection module (FIM) is introduced, employing multiscale convolution to capture local features and integrating AA to enhance global feature association. Moreover, a progressive fusion module (PFM) is employed to enhance multidimensional feature collaboration and hierarchical integration. Extensive studies conducted using five significant HSI datasets verify the effectiveness of PMA2-Net, demonstrating its superior performance compared to current state-of-the-art (SOTA) fusion techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信