{"title":"Infinite quantum signal processing","authors":"Yulong Dong, Lin Lin, Hongkang Ni, Jiasu Wang","doi":"10.22331/q-2024-12-10-1558","DOIUrl":null,"url":null,"abstract":"Quantum signal processing (QSP) represents a real scalar polynomial of degree $d$ using a product of unitary matrices of size $2\\times 2$, parameterized by $(d+1)$ real numbers called the phase factors. This innovative representation of polynomials has a wide range of applications in quantum computation. When the polynomial of interest is obtained by truncating an infinite polynomial series, a natural question is whether the phase factors have a well defined limit as the degree $d\\to \\infty$. While the phase factors are generally not unique, we find that there exists a consistent choice of parameterization so that the limit is well defined in the $\\ell^1$ space. This generalization of QSP, called the infinite quantum signal processing, can be used to represent a large class of non-polynomial functions. Our analysis reveals a surprising connection between the regularity of the target function and the decay properties of the phase factors. Our analysis also inspires a very simple and efficient algorithm to approximately compute the phase factors in the $\\ell^1$ space. The algorithm uses only double precision arithmetic operations, and provably converges when the $\\ell^1$ norm of the Chebyshev coefficients of the target function is upper bounded by a constant that is independent of $d$. This is also the first numerically stable algorithm for finding phase factors with provable performance guarantees in the limit $d\\to \\infty$.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"41 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-10-1558","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum signal processing (QSP) represents a real scalar polynomial of degree $d$ using a product of unitary matrices of size $2\times 2$, parameterized by $(d+1)$ real numbers called the phase factors. This innovative representation of polynomials has a wide range of applications in quantum computation. When the polynomial of interest is obtained by truncating an infinite polynomial series, a natural question is whether the phase factors have a well defined limit as the degree $d\to \infty$. While the phase factors are generally not unique, we find that there exists a consistent choice of parameterization so that the limit is well defined in the $\ell^1$ space. This generalization of QSP, called the infinite quantum signal processing, can be used to represent a large class of non-polynomial functions. Our analysis reveals a surprising connection between the regularity of the target function and the decay properties of the phase factors. Our analysis also inspires a very simple and efficient algorithm to approximately compute the phase factors in the $\ell^1$ space. The algorithm uses only double precision arithmetic operations, and provably converges when the $\ell^1$ norm of the Chebyshev coefficients of the target function is upper bounded by a constant that is independent of $d$. This is also the first numerically stable algorithm for finding phase factors with provable performance guarantees in the limit $d\to \infty$.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.