多类型嵌入式HVDC增强交直流混合电力系统运行性能的研究

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chunke Hu;Xi Wu;Hui Cai
{"title":"多类型嵌入式HVDC增强交直流混合电力系统运行性能的研究","authors":"Chunke Hu;Xi Wu;Hui Cai","doi":"10.1109/TPWRD.2024.3515109","DOIUrl":null,"url":null,"abstract":"The embedded high voltage direct current (HVDC) transmission is a key strategy for augmenting power transmission capacity within limited corridors, particularly for large-scale renewable energy integration. Multi-type embedded HVDC combines advantages of different HVDC technologies, serving as an important method to improve the operation performance of the hybrid AC/DC power system. This paper investigates the impacts of multi-type embedded HVDC on the operation performance of the system, indicating the enhancement from multiple steady-state and transient perspectives. The coupling effects of power transmission and bus voltages are incorporated in the analysis, and three types of embedded HVDC systems are involved, including line-commutated converter (LCC), static synchronous compensator supported line-commutated converter (SLCC) and voltage source converter (VSC). The apparent increase in short circuit ratio (AISCR) indices are evaluated to measure the enhancement in terms of maximum available power (MAP), commutation failure immunity index (CFII) and temporary overvoltage (TOV) quantitatively. The fault recovery process is also studied with comprehensive analysis of the dynamic characteristics. The embedded SLCC-HVDC and VSC-HVDC systems provide reactive power compensation through tie lines, significantly enhancing MAP and fault recovery performance of the system. Static var generator (SVG) capacity cannot be fully exploited under the independent and constant control modes of SVG and VSC in analysis of CFII and TOV performance. A shorter electrical distance between receiving-end subsystems will be more beneficial to the enhancement and should be considered in the system planning.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"606-617"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Operation Performance Enhancement of Hybrid AC/DC Power System With Multi-Type Embedded HVDC\",\"authors\":\"Chunke Hu;Xi Wu;Hui Cai\",\"doi\":\"10.1109/TPWRD.2024.3515109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The embedded high voltage direct current (HVDC) transmission is a key strategy for augmenting power transmission capacity within limited corridors, particularly for large-scale renewable energy integration. Multi-type embedded HVDC combines advantages of different HVDC technologies, serving as an important method to improve the operation performance of the hybrid AC/DC power system. This paper investigates the impacts of multi-type embedded HVDC on the operation performance of the system, indicating the enhancement from multiple steady-state and transient perspectives. The coupling effects of power transmission and bus voltages are incorporated in the analysis, and three types of embedded HVDC systems are involved, including line-commutated converter (LCC), static synchronous compensator supported line-commutated converter (SLCC) and voltage source converter (VSC). The apparent increase in short circuit ratio (AISCR) indices are evaluated to measure the enhancement in terms of maximum available power (MAP), commutation failure immunity index (CFII) and temporary overvoltage (TOV) quantitatively. The fault recovery process is also studied with comprehensive analysis of the dynamic characteristics. The embedded SLCC-HVDC and VSC-HVDC systems provide reactive power compensation through tie lines, significantly enhancing MAP and fault recovery performance of the system. Static var generator (SVG) capacity cannot be fully exploited under the independent and constant control modes of SVG and VSC in analysis of CFII and TOV performance. A shorter electrical distance between receiving-end subsystems will be more beneficial to the enhancement and should be considered in the system planning.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 1\",\"pages\":\"606-617\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791335/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791335/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Operation Performance Enhancement of Hybrid AC/DC Power System With Multi-Type Embedded HVDC
The embedded high voltage direct current (HVDC) transmission is a key strategy for augmenting power transmission capacity within limited corridors, particularly for large-scale renewable energy integration. Multi-type embedded HVDC combines advantages of different HVDC technologies, serving as an important method to improve the operation performance of the hybrid AC/DC power system. This paper investigates the impacts of multi-type embedded HVDC on the operation performance of the system, indicating the enhancement from multiple steady-state and transient perspectives. The coupling effects of power transmission and bus voltages are incorporated in the analysis, and three types of embedded HVDC systems are involved, including line-commutated converter (LCC), static synchronous compensator supported line-commutated converter (SLCC) and voltage source converter (VSC). The apparent increase in short circuit ratio (AISCR) indices are evaluated to measure the enhancement in terms of maximum available power (MAP), commutation failure immunity index (CFII) and temporary overvoltage (TOV) quantitatively. The fault recovery process is also studied with comprehensive analysis of the dynamic characteristics. The embedded SLCC-HVDC and VSC-HVDC systems provide reactive power compensation through tie lines, significantly enhancing MAP and fault recovery performance of the system. Static var generator (SVG) capacity cannot be fully exploited under the independent and constant control modes of SVG and VSC in analysis of CFII and TOV performance. A shorter electrical distance between receiving-end subsystems will be more beneficial to the enhancement and should be considered in the system planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信