多视角过程挖掘的轨迹编码技术:比较研究

Antonino Rullo, Farhana Alam, Edoardo Serra
{"title":"多视角过程挖掘的轨迹编码技术:比较研究","authors":"Antonino Rullo, Farhana Alam, Edoardo Serra","doi":"10.1002/widm.1573","DOIUrl":null,"url":null,"abstract":"Process mining (PM) comprises a variety of methods for discovering information about processes from their execution logs. Some of them, such as trace clustering, trace classification, and anomalous trace detection require a preliminary preprocessing step in which the raw data is encoded into a numerical feature space. To this end, encoding techniques are used to generate vectorial representations of process traces. Most of the PM literature provides trace encoding techniques that look at the control flow, that is, only encode the sequence of activities that characterize a process trace disregarding other process data that is fundamental for effectively describing the process behavior. To fill this gap, in this article we show 19 trace encoding methods that work in a multi‐perspective manner, that is, by embedding events and trace attributes in addition to activity names into the vectorial representations of process traces. We also provide an extensive experimental study where these techniques are applied to real‐life datasets and compared to each other.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study\",\"authors\":\"Antonino Rullo, Farhana Alam, Edoardo Serra\",\"doi\":\"10.1002/widm.1573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process mining (PM) comprises a variety of methods for discovering information about processes from their execution logs. Some of them, such as trace clustering, trace classification, and anomalous trace detection require a preliminary preprocessing step in which the raw data is encoded into a numerical feature space. To this end, encoding techniques are used to generate vectorial representations of process traces. Most of the PM literature provides trace encoding techniques that look at the control flow, that is, only encode the sequence of activities that characterize a process trace disregarding other process data that is fundamental for effectively describing the process behavior. To fill this gap, in this article we show 19 trace encoding methods that work in a multi‐perspective manner, that is, by embedding events and trace attributes in addition to activity names into the vectorial representations of process traces. We also provide an extensive experimental study where these techniques are applied to real‐life datasets and compared to each other.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流程挖掘(Process mining, PM)包括从流程的执行日志中发现流程信息的各种方法。其中一些方法,如迹聚类、迹分类和异常迹检测,需要一个初步的预处理步骤,在这个步骤中,原始数据被编码到一个数字特征空间中。为此,使用编码技术来生成过程轨迹的矢量表示。大多数PM文献提供了跟踪编码技术,这些技术着眼于控制流,也就是说,只编码表征过程跟踪的活动序列,而忽略了有效描述过程行为的基础的其他过程数据。为了填补这一空白,在本文中,我们展示了19种以多视角方式工作的跟踪编码方法,即通过将事件和跟踪属性以及活动名称嵌入到过程跟踪的向量表示中。我们还提供了一个广泛的实验研究,其中这些技术应用于现实生活中的数据集,并相互比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study
Process mining (PM) comprises a variety of methods for discovering information about processes from their execution logs. Some of them, such as trace clustering, trace classification, and anomalous trace detection require a preliminary preprocessing step in which the raw data is encoded into a numerical feature space. To this end, encoding techniques are used to generate vectorial representations of process traces. Most of the PM literature provides trace encoding techniques that look at the control flow, that is, only encode the sequence of activities that characterize a process trace disregarding other process data that is fundamental for effectively describing the process behavior. To fill this gap, in this article we show 19 trace encoding methods that work in a multi‐perspective manner, that is, by embedding events and trace attributes in addition to activity names into the vectorial representations of process traces. We also provide an extensive experimental study where these techniques are applied to real‐life datasets and compared to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信