利用SO(3)-可操纵卷积在三维医疗数据中进行姿态鲁棒语义分割。

Ivan Diaz, Mario Geiger, Richard Iain McKinley
{"title":"利用SO(3)-可操纵卷积在三维医疗数据中进行姿态鲁棒语义分割。","authors":"Ivan Diaz, Mario Geiger, Richard Iain McKinley","doi":"10.59275/j.melba.2024-7189","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) allow for parameter sharing and translational equivariance by using convolutional kernels in their linear layers. By restricting these kernels to be SO(3)-steerable, CNNs can further improve parameter sharing. These rotationally-equivariant convolutional layers have several advantages over standard convolutional layers, including increased robustness to unseen poses, smaller network size, and improved sample efficiency. Despite this, most segmentation networks used in medical image analysis continue to rely on standard convolutional kernels. In this paper, we present a new family of segmentation networks that use equivariant voxel convolutions based on spherical harmonics. These networks are robust to data poses not seen during training, and do not require rotation-based data augmentation during training. In addition, we demonstrate improved segmentation performance in MRI brain tumor and healthy brain structure segmentation tasks, with enhanced robustness to reduced amounts of training data and improved parameter efficiency. Code to reproduce our results, and to implement the equivariant segmentation networks for other tasks is available at http://github.com/SCAN-NRAD/e3nn_Unet.</p>","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"2 May 2024","pages":"834-855"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data.\",\"authors\":\"Ivan Diaz, Mario Geiger, Richard Iain McKinley\",\"doi\":\"10.59275/j.melba.2024-7189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convolutional neural networks (CNNs) allow for parameter sharing and translational equivariance by using convolutional kernels in their linear layers. By restricting these kernels to be SO(3)-steerable, CNNs can further improve parameter sharing. These rotationally-equivariant convolutional layers have several advantages over standard convolutional layers, including increased robustness to unseen poses, smaller network size, and improved sample efficiency. Despite this, most segmentation networks used in medical image analysis continue to rely on standard convolutional kernels. In this paper, we present a new family of segmentation networks that use equivariant voxel convolutions based on spherical harmonics. These networks are robust to data poses not seen during training, and do not require rotation-based data augmentation during training. In addition, we demonstrate improved segmentation performance in MRI brain tumor and healthy brain structure segmentation tasks, with enhanced robustness to reduced amounts of training data and improved parameter efficiency. Code to reproduce our results, and to implement the equivariant segmentation networks for other tasks is available at http://github.com/SCAN-NRAD/e3nn_Unet.</p>\",\"PeriodicalId\":75083,\"journal\":{\"name\":\"The journal of machine learning for biomedical imaging\",\"volume\":\"2 May 2024\",\"pages\":\"834-855\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of machine learning for biomedical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59275/j.melba.2024-7189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of machine learning for biomedical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59275/j.melba.2024-7189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)通过在线性层中使用卷积核,实现了参数共享和平移等差。通过将这些核限制为 SO(3)-steerable 核,卷积神经网络可以进一步改善参数共享。与标准卷积层相比,这些旋转平方卷积层具有多项优势,包括对未知姿势的鲁棒性更强、网络规模更小、采样效率更高。尽管如此,医学图像分析中使用的大多数分割网络仍然依赖于标准卷积核。在本文中,我们提出了一个新的分割网络系列,它使用基于球面谐波的等变体素卷积。这些网络对训练过程中未出现的数据姿态具有鲁棒性,并且在训练过程中不需要基于旋转的数据增强。此外,我们还证明了在核磁共振成像脑肿瘤和健康大脑结构分割任务中分割性能的提高,以及对训练数据量减少和参数效率提高的鲁棒性。重现我们的结果以及为其他任务实现等变分割网络的代码可在 http://github.com/SCAN-NRAD/e3nn_Unet 网站上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data.

Convolutional neural networks (CNNs) allow for parameter sharing and translational equivariance by using convolutional kernels in their linear layers. By restricting these kernels to be SO(3)-steerable, CNNs can further improve parameter sharing. These rotationally-equivariant convolutional layers have several advantages over standard convolutional layers, including increased robustness to unseen poses, smaller network size, and improved sample efficiency. Despite this, most segmentation networks used in medical image analysis continue to rely on standard convolutional kernels. In this paper, we present a new family of segmentation networks that use equivariant voxel convolutions based on spherical harmonics. These networks are robust to data poses not seen during training, and do not require rotation-based data augmentation during training. In addition, we demonstrate improved segmentation performance in MRI brain tumor and healthy brain structure segmentation tasks, with enhanced robustness to reduced amounts of training data and improved parameter efficiency. Code to reproduce our results, and to implement the equivariant segmentation networks for other tasks is available at http://github.com/SCAN-NRAD/e3nn_Unet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信