组合优化的概率提升技术。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2499
Sanpawat Kantabutra
{"title":"组合优化的概率提升技术。","authors":"Sanpawat Kantabutra","doi":"10.7717/peerj-cs.2499","DOIUrl":null,"url":null,"abstract":"<p><p>In many combinatorial optimization problems we want a particular set of k out of n items with some certain properties (or constraints). These properties may involve the k items. In the worst case a deterministic algorithm must scan n-k items in the set to verify the k items. If we pick a set of k items randomly and verify the properties, it will take about (n/k)<sup>k</sup> verifications, which can be a really large number for some values of k and n. In this article we introduce a significantly faster randomized strategy with very high probability to pick the set of such k items by amplifying the probability of obtaining a target set of k items and show how this probability boosting technique can be applied to solve three different combinatorial optimization problems efficiently. In all three applications algorithms that use the probability boosting technique show superiority over their deterministic counterparts.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2499"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623238/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probability-boosting technique for combinatorial optimization.\",\"authors\":\"Sanpawat Kantabutra\",\"doi\":\"10.7717/peerj-cs.2499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many combinatorial optimization problems we want a particular set of k out of n items with some certain properties (or constraints). These properties may involve the k items. In the worst case a deterministic algorithm must scan n-k items in the set to verify the k items. If we pick a set of k items randomly and verify the properties, it will take about (n/k)<sup>k</sup> verifications, which can be a really large number for some values of k and n. In this article we introduce a significantly faster randomized strategy with very high probability to pick the set of such k items by amplifying the probability of obtaining a target set of k items and show how this probability boosting technique can be applied to solve three different combinatorial optimization problems efficiently. In all three applications algorithms that use the probability boosting technique show superiority over their deterministic counterparts.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2499\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623238/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2499\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2499","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在许多组合优化问题中,我们需要n个项目中的k个具有某些属性(或约束)的特定集合。这些属性可能涉及k项。在最坏的情况下,确定性算法必须扫描集合中的n-k个项目来验证k个项目。如果我们随机选取一组k项来验证属性,它将需要(n/k)k次验证,对于k和n的某些值来说,这可能是一个非常大的数字。在本文中,我们介绍了一种显著更快的随机化策略,通过放大获得k个项目目标集的概率,以非常高的概率选择k个项目的集合,并展示了如何将这种概率提升技术应用于有效地解决三个不同的组合优化问题。在所有这三种应用中,使用概率提升技术的算法比它们的确定性对应物表现出优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability-boosting technique for combinatorial optimization.

In many combinatorial optimization problems we want a particular set of k out of n items with some certain properties (or constraints). These properties may involve the k items. In the worst case a deterministic algorithm must scan n-k items in the set to verify the k items. If we pick a set of k items randomly and verify the properties, it will take about (n/k)k verifications, which can be a really large number for some values of k and n. In this article we introduce a significantly faster randomized strategy with very high probability to pick the set of such k items by amplifying the probability of obtaining a target set of k items and show how this probability boosting technique can be applied to solve three different combinatorial optimization problems efficiently. In all three applications algorithms that use the probability boosting technique show superiority over their deterministic counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信