模糊知识库系统的可解释性研究。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2558
Francesco Camastra, Angelo Ciaramella, Giuseppe Salvi, Salvatore Sposato, Antonino Staiano
{"title":"模糊知识库系统的可解释性研究。","authors":"Francesco Camastra, Angelo Ciaramella, Giuseppe Salvi, Salvatore Sposato, Antonino Staiano","doi":"10.7717/peerj-cs.2558","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, fuzzy rule-based systems have been attracting great interest in interpretable and eXplainable Artificial Intelligence as <i>ante-hoc</i> methods. These systems represent knowledge that humans can easily understand, but since they are not interpretable <i>per se</i>, they must remain simple and understandable, and the rule base must have a compactness property. This article presents an algorithm for minimizing the fuzzy rule base, leveraging rough set theory and a greedy strategy. Reducing fuzzy rules simplifies the rule base, facilitating the construction of interpretable inference systems such as decision support and recommendation systems. Validation and comparison of the proposed methodology using both real and benchmark data yield encouraging results.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2558"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623172/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the interpretability of fuzzy knowledge base systems.\",\"authors\":\"Francesco Camastra, Angelo Ciaramella, Giuseppe Salvi, Salvatore Sposato, Antonino Staiano\",\"doi\":\"10.7717/peerj-cs.2558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, fuzzy rule-based systems have been attracting great interest in interpretable and eXplainable Artificial Intelligence as <i>ante-hoc</i> methods. These systems represent knowledge that humans can easily understand, but since they are not interpretable <i>per se</i>, they must remain simple and understandable, and the rule base must have a compactness property. This article presents an algorithm for minimizing the fuzzy rule base, leveraging rough set theory and a greedy strategy. Reducing fuzzy rules simplifies the rule base, facilitating the construction of interpretable inference systems such as decision support and recommendation systems. Validation and comparison of the proposed methodology using both real and benchmark data yield encouraging results.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2558\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623172/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2558\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2558","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于模糊规则的系统在可解释和可解释的人工智能领域引起了极大的兴趣。这些系统表示人类可以很容易理解的知识,但由于它们本身是不可解释的,因此它们必须保持简单和可理解,并且规则库必须具有紧凑性。本文提出了一种利用粗糙集理论和贪心策略最小化模糊规则库的算法。减少模糊规则简化了规则库,便于构建可解释的推理系统,如决策支持和推荐系统。使用真实和基准数据验证和比较所提出的方法产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the interpretability of fuzzy knowledge base systems.

In recent years, fuzzy rule-based systems have been attracting great interest in interpretable and eXplainable Artificial Intelligence as ante-hoc methods. These systems represent knowledge that humans can easily understand, but since they are not interpretable per se, they must remain simple and understandable, and the rule base must have a compactness property. This article presents an algorithm for minimizing the fuzzy rule base, leveraging rough set theory and a greedy strategy. Reducing fuzzy rules simplifies the rule base, facilitating the construction of interpretable inference systems such as decision support and recommendation systems. Validation and comparison of the proposed methodology using both real and benchmark data yield encouraging results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信