褪黑素:减轻肾小管上皮细胞间质转化的潜在治疗剂。

IF 2 4区 医学 Q3 PHYSIOLOGY
Journal of Physiology and Pharmacology Pub Date : 2024-10-01 Epub Date: 2024-12-04 DOI:10.26402/jpp.2024.5.02
J Teng, F Sun, X Wang, Z Fang, Y Sun, J Li
{"title":"褪黑素:减轻肾小管上皮细胞间质转化的潜在治疗剂。","authors":"J Teng, F Sun, X Wang, Z Fang, Y Sun, J Li","doi":"10.26402/jpp.2024.5.02","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin (Mel) has been documented to modulate epithelial-mesenchymal transition (EMT) in cellular systems. The interstitial transformation of renal tubular epithelial cells constitutes a key pathogenic mechanism underlying renal fibrosis. This study aims to elucidate the role of Mel in the EMT process of renal tubular epithelial cells. A rat model of unilateral ureteral obstruction (UUO) was developed through unilateral ureteral ligation, followed by treatment with Mel (5, 10, and 20 mg/kg). Subsequent analyses included histopathological examination, measurement of creatinine and blood urea nitrogen levels, immunofluorescence analysis of fibronectin (FN), and immunohistochemical analysis of alpha-smooth muscle actin (α-SMA). Transforming growth factor-beta 1 (TGF-β1) initiates a fibrotic response in NRK-52E cells, which is subsequently treated with Mel (0. 1, 1, and 10 μmol/L). Evaluates cell viability, migration, and the expression of EMT related proteins, including FN, α-SMA, collagenase I, and E-cadherin. To validate the regulatory interaction between miR-153-3p and Forkhead transcription factor o subfamily member 3A (FOXO3A), cells are transfected with miR-153-3p mimics or siRNA targeting FOXO3A (si-FOXO3A). In results Mel exhibits a dose-dependent capacity to ameliorate renal injury and rectify glomerular structural abnormalities in UUO rat models. In comparison to UUO model rats, melatonin significantly reduced the expression levels of FN and α-SMA. In vitro studies demonstrated that Mel inhibited the activity and migratory behavior of cells, as well as the protein expression levels of FN, α-SMA, and collagenase I in NRK-52E cells. Relative to the control group, UUO rats and TGF-β1-induced NRK-52E cells exhibited elevated expression of miR-153-3p and reduced FOXO3A. In vitro models further revealed that upregulation of miR-153-3p or downregulation of FOXO3A can negate the protective effects of Melatonin on TGF-β1-induced EMT. Concluding, Mel inhibits miR-153-3p, thereby promoting the transcription of FOXO3A in UUO rats, which alleviates renal injury and attenuates TGF-1-induced EMT in cells.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"75 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin: a potential therapeutic agent for alleviating renal tubular epithelial cell interstitial transformation.\",\"authors\":\"J Teng, F Sun, X Wang, Z Fang, Y Sun, J Li\",\"doi\":\"10.26402/jpp.2024.5.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melatonin (Mel) has been documented to modulate epithelial-mesenchymal transition (EMT) in cellular systems. The interstitial transformation of renal tubular epithelial cells constitutes a key pathogenic mechanism underlying renal fibrosis. This study aims to elucidate the role of Mel in the EMT process of renal tubular epithelial cells. A rat model of unilateral ureteral obstruction (UUO) was developed through unilateral ureteral ligation, followed by treatment with Mel (5, 10, and 20 mg/kg). Subsequent analyses included histopathological examination, measurement of creatinine and blood urea nitrogen levels, immunofluorescence analysis of fibronectin (FN), and immunohistochemical analysis of alpha-smooth muscle actin (α-SMA). Transforming growth factor-beta 1 (TGF-β1) initiates a fibrotic response in NRK-52E cells, which is subsequently treated with Mel (0. 1, 1, and 10 μmol/L). Evaluates cell viability, migration, and the expression of EMT related proteins, including FN, α-SMA, collagenase I, and E-cadherin. To validate the regulatory interaction between miR-153-3p and Forkhead transcription factor o subfamily member 3A (FOXO3A), cells are transfected with miR-153-3p mimics or siRNA targeting FOXO3A (si-FOXO3A). In results Mel exhibits a dose-dependent capacity to ameliorate renal injury and rectify glomerular structural abnormalities in UUO rat models. In comparison to UUO model rats, melatonin significantly reduced the expression levels of FN and α-SMA. In vitro studies demonstrated that Mel inhibited the activity and migratory behavior of cells, as well as the protein expression levels of FN, α-SMA, and collagenase I in NRK-52E cells. Relative to the control group, UUO rats and TGF-β1-induced NRK-52E cells exhibited elevated expression of miR-153-3p and reduced FOXO3A. In vitro models further revealed that upregulation of miR-153-3p or downregulation of FOXO3A can negate the protective effects of Melatonin on TGF-β1-induced EMT. Concluding, Mel inhibits miR-153-3p, thereby promoting the transcription of FOXO3A in UUO rats, which alleviates renal injury and attenuates TGF-1-induced EMT in cells.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":\"75 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2024.5.02\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2024.5.02","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

褪黑素(Mel)已被证明可以调节细胞系统的上皮-间质转化(EMT)。肾小管上皮细胞的间质转化是肾纤维化的重要致病机制。本研究旨在阐明Mel在肾小管上皮细胞EMT过程中的作用。通过单侧输尿管结扎建立大鼠单侧输尿管梗阻(UUO)模型,然后给予5、10、20 mg/kg的Mel治疗。随后的分析包括组织病理学检查、肌酐和血尿素氮水平测定、纤维连接蛋白(FN)的免疫荧光分析和α-平滑肌肌动蛋白(α-SMA)的免疫组织化学分析。转化生长因子-β1 (TGF-β1)在NRK-52E细胞中启动纤维化反应,随后用Mel(0。1、1和10 μmol/L)。评估细胞活力、迁移和EMT相关蛋白的表达,包括FN、α-SMA、胶原酶I和e -钙粘蛋白。为了验证miR-153-3p与叉头转录因子o亚家族成员3A (FOXO3A)之间的调节相互作用,我们用靶向FOXO3A的miR-153-3p模拟物或siRNA转染细胞(si-FOXO3A)。结果Mel在UUO大鼠模型中表现出剂量依赖性的改善肾损伤和纠正肾小球结构异常的能力。与UUO模型大鼠相比,褪黑素显著降低FN和α-SMA的表达水平。体外研究表明,Mel抑制了NRK-52E细胞的活性和迁移行为,并抑制了FN、α-SMA和胶原酶I的蛋白表达水平。与对照组相比,UUO大鼠和TGF-β1诱导的NRK-52E细胞miR-153-3p表达升高,FOXO3A表达降低。体外模型进一步揭示miR-153-3p上调或FOXO3A下调可否定褪黑素对TGF-β1诱导的EMT的保护作用。综上所述,Mel抑制miR-153-3p,从而促进UUO大鼠FOXO3A的转录,从而减轻肾损伤,减轻tgf -1诱导的细胞EMT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melatonin: a potential therapeutic agent for alleviating renal tubular epithelial cell interstitial transformation.

Melatonin (Mel) has been documented to modulate epithelial-mesenchymal transition (EMT) in cellular systems. The interstitial transformation of renal tubular epithelial cells constitutes a key pathogenic mechanism underlying renal fibrosis. This study aims to elucidate the role of Mel in the EMT process of renal tubular epithelial cells. A rat model of unilateral ureteral obstruction (UUO) was developed through unilateral ureteral ligation, followed by treatment with Mel (5, 10, and 20 mg/kg). Subsequent analyses included histopathological examination, measurement of creatinine and blood urea nitrogen levels, immunofluorescence analysis of fibronectin (FN), and immunohistochemical analysis of alpha-smooth muscle actin (α-SMA). Transforming growth factor-beta 1 (TGF-β1) initiates a fibrotic response in NRK-52E cells, which is subsequently treated with Mel (0. 1, 1, and 10 μmol/L). Evaluates cell viability, migration, and the expression of EMT related proteins, including FN, α-SMA, collagenase I, and E-cadherin. To validate the regulatory interaction between miR-153-3p and Forkhead transcription factor o subfamily member 3A (FOXO3A), cells are transfected with miR-153-3p mimics or siRNA targeting FOXO3A (si-FOXO3A). In results Mel exhibits a dose-dependent capacity to ameliorate renal injury and rectify glomerular structural abnormalities in UUO rat models. In comparison to UUO model rats, melatonin significantly reduced the expression levels of FN and α-SMA. In vitro studies demonstrated that Mel inhibited the activity and migratory behavior of cells, as well as the protein expression levels of FN, α-SMA, and collagenase I in NRK-52E cells. Relative to the control group, UUO rats and TGF-β1-induced NRK-52E cells exhibited elevated expression of miR-153-3p and reduced FOXO3A. In vitro models further revealed that upregulation of miR-153-3p or downregulation of FOXO3A can negate the protective effects of Melatonin on TGF-β1-induced EMT. Concluding, Mel inhibits miR-153-3p, thereby promoting the transcription of FOXO3A in UUO rats, which alleviates renal injury and attenuates TGF-1-induced EMT in cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信