IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Boris Bogdanow, Max Ruwolt, Julia Ruta, Lars Mühlberg, Cong Wang, Wen-Feng Zeng, Arne Elofsson, Fan Liu
{"title":"Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies.","authors":"Boris Bogdanow, Max Ruwolt, Julia Ruta, Lars Mühlberg, Cong Wang, Wen-Feng Zeng, Arne Elofsson, Fan Liu","doi":"10.1038/s44320-024-00079-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases. These workflows show shortcomings either in sensitivity (many false negatives) or specificity (many false positives). To ameliorate the limited sensitivity without compromising specificity, we develop an alternative target-decoy search strategy using fused target-decoy databases. Furthermore, we devise a different data filtering scheme that takes the inter-link context of the XL-MS dataset into account. Combining both approaches maintains low error rates and minimizes false negatives, as we show by mathematical simulations, analysis of experimental ground-truth data, and application to various biological datasets. In human cells, inter-link identifications increase by 75% and we confirm their structural accuracy through proteome-wide comparisons to AlphaFold2-derived models. Taken together, target-decoy fusion and context-sensitive data filtering deepen and fine-tune XL-MS-based interactomics.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00079-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

交联质谱(XL-MS)可以通过捕捉不同蛋白质之间的交联(连接间)来描述原生生物系统中蛋白质-蛋白质相互作用(PPIs)的特征。然而,连接间的识别仍然具有挑战性,需要专门的数据过滤方案和全面的误差控制。在这里,我们利用目标-诱饵蛋白质序列数据库,结合误差率估计策略,对现有的数据过滤方案进行了基准测试。这些工作流程在灵敏度(许多假阴性)或特异性(许多假阳性)方面都存在缺陷。为了在不影响特异性的情况下改善有限的灵敏度,我们开发了一种使用融合的目标-诱饵数据库的替代目标-诱饵搜索策略。此外,我们还设计了一种不同的数据过滤方案,将 XL-MS 数据集的相互链接背景考虑在内。正如我们通过数学模拟、对地面实况实验数据的分析以及对各种生物数据集的应用所展示的那样,将这两种方法结合起来可以保持较低的错误率,并最大限度地减少假阴性。在人体细胞中,链接间的识别率提高了 75%,通过与 AlphaFold2 衍生模型进行全蛋白质组比较,我们证实了其结构准确性。目标-诱饵融合和上下文敏感数据过滤共同深化和微调了基于 XL-MS 的相互作用组学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies.

Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases. These workflows show shortcomings either in sensitivity (many false negatives) or specificity (many false positives). To ameliorate the limited sensitivity without compromising specificity, we develop an alternative target-decoy search strategy using fused target-decoy databases. Furthermore, we devise a different data filtering scheme that takes the inter-link context of the XL-MS dataset into account. Combining both approaches maintains low error rates and minimizes false negatives, as we show by mathematical simulations, analysis of experimental ground-truth data, and application to various biological datasets. In human cells, inter-link identifications increase by 75% and we confirm their structural accuracy through proteome-wide comparisons to AlphaFold2-derived models. Taken together, target-decoy fusion and context-sensitive data filtering deepen and fine-tune XL-MS-based interactomics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信