Xin-Ru Wen, Jia-Wei Tang, Jie Chen, Hui-Min Chen, Muhammad Usman, Quan Yuan, Yu-Rong Tang, Yu-Dong Zhang, Hui-Jin Chen, Liang Wang
{"title":"使用机器学习辅助的人体阴道液表面增强拉曼光谱快速诊断细菌性阴道病。","authors":"Xin-Ru Wen, Jia-Wei Tang, Jie Chen, Hui-Min Chen, Muhammad Usman, Quan Yuan, Yu-Rong Tang, Yu-Dong Zhang, Hui-Jin Chen, Liang Wang","doi":"10.1128/msystems.01058-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial vaginosis (BV) is an abnormal gynecological condition caused by the overgrowth of specific bacteria in the vagina. This study aims to develop a novel method for BV detection by integrating surface-enhanced Raman scattering (SERS) with machine learning (ML) algorithms. Vaginal fluid samples were classified as BV positive or BV negative using the BVBlue Test and clinical microscopy, followed by SERS spectral acquisition to construct the data set. Preliminary SERS spectral analysis revealed notable disparities in characteristic peak features. Multiple ML models were constructed and optimized, with the convolutional neural network (CNN) model achieving the highest prediction accuracy at 99%. Gradient-weighted class activation mapping (Grad-CAM) was used to highlight important regions in the images for prediction. Moreover, the CNN model was blindly tested on SERS spectra of vaginal fluid samples collected from 40 participants with unknown BV infection status, achieving a prediction accuracy of 90.75% compared with the results of the BVBlue Test combined with clinical microscopy. This novel technique is simple, cheap, and rapid in accurately diagnosing bacterial vaginosis, potentially complementing current diagnostic methods in clinical laboratories.</p><p><strong>Importance: </strong>The accurate and rapid diagnosis of bacterial vaginosis (BV) is crucial due to its high prevalence and association with serious health complications, including increased risk of sexually transmitted infections and adverse pregnancy outcomes. Although widely used, traditional diagnostic methods have significant limitations in subjectivity, complexity, and cost. The development of a novel diagnostic approach that integrates SERS with ML offers a promising solution. The CNN model's high prediction accuracy, cost-effectiveness, and extraordinary rapidity underscore its significant potential to enhance the diagnosis of BV in clinical settings. This method not only addresses the limitations of current diagnostic tools but also provides a more accessible and reliable option for healthcare providers, ultimately enhancing patient care and health outcomes.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0105824"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid diagnosis of bacterial vaginosis using machine-learning-assisted surface-enhanced Raman spectroscopy of human vaginal fluids.\",\"authors\":\"Xin-Ru Wen, Jia-Wei Tang, Jie Chen, Hui-Min Chen, Muhammad Usman, Quan Yuan, Yu-Rong Tang, Yu-Dong Zhang, Hui-Jin Chen, Liang Wang\",\"doi\":\"10.1128/msystems.01058-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial vaginosis (BV) is an abnormal gynecological condition caused by the overgrowth of specific bacteria in the vagina. This study aims to develop a novel method for BV detection by integrating surface-enhanced Raman scattering (SERS) with machine learning (ML) algorithms. Vaginal fluid samples were classified as BV positive or BV negative using the BVBlue Test and clinical microscopy, followed by SERS spectral acquisition to construct the data set. Preliminary SERS spectral analysis revealed notable disparities in characteristic peak features. Multiple ML models were constructed and optimized, with the convolutional neural network (CNN) model achieving the highest prediction accuracy at 99%. Gradient-weighted class activation mapping (Grad-CAM) was used to highlight important regions in the images for prediction. Moreover, the CNN model was blindly tested on SERS spectra of vaginal fluid samples collected from 40 participants with unknown BV infection status, achieving a prediction accuracy of 90.75% compared with the results of the BVBlue Test combined with clinical microscopy. This novel technique is simple, cheap, and rapid in accurately diagnosing bacterial vaginosis, potentially complementing current diagnostic methods in clinical laboratories.</p><p><strong>Importance: </strong>The accurate and rapid diagnosis of bacterial vaginosis (BV) is crucial due to its high prevalence and association with serious health complications, including increased risk of sexually transmitted infections and adverse pregnancy outcomes. Although widely used, traditional diagnostic methods have significant limitations in subjectivity, complexity, and cost. The development of a novel diagnostic approach that integrates SERS with ML offers a promising solution. The CNN model's high prediction accuracy, cost-effectiveness, and extraordinary rapidity underscore its significant potential to enhance the diagnosis of BV in clinical settings. This method not only addresses the limitations of current diagnostic tools but also provides a more accessible and reliable option for healthcare providers, ultimately enhancing patient care and health outcomes.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0105824\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.01058-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01058-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Rapid diagnosis of bacterial vaginosis using machine-learning-assisted surface-enhanced Raman spectroscopy of human vaginal fluids.
Bacterial vaginosis (BV) is an abnormal gynecological condition caused by the overgrowth of specific bacteria in the vagina. This study aims to develop a novel method for BV detection by integrating surface-enhanced Raman scattering (SERS) with machine learning (ML) algorithms. Vaginal fluid samples were classified as BV positive or BV negative using the BVBlue Test and clinical microscopy, followed by SERS spectral acquisition to construct the data set. Preliminary SERS spectral analysis revealed notable disparities in characteristic peak features. Multiple ML models were constructed and optimized, with the convolutional neural network (CNN) model achieving the highest prediction accuracy at 99%. Gradient-weighted class activation mapping (Grad-CAM) was used to highlight important regions in the images for prediction. Moreover, the CNN model was blindly tested on SERS spectra of vaginal fluid samples collected from 40 participants with unknown BV infection status, achieving a prediction accuracy of 90.75% compared with the results of the BVBlue Test combined with clinical microscopy. This novel technique is simple, cheap, and rapid in accurately diagnosing bacterial vaginosis, potentially complementing current diagnostic methods in clinical laboratories.
Importance: The accurate and rapid diagnosis of bacterial vaginosis (BV) is crucial due to its high prevalence and association with serious health complications, including increased risk of sexually transmitted infections and adverse pregnancy outcomes. Although widely used, traditional diagnostic methods have significant limitations in subjectivity, complexity, and cost. The development of a novel diagnostic approach that integrates SERS with ML offers a promising solution. The CNN model's high prediction accuracy, cost-effectiveness, and extraordinary rapidity underscore its significant potential to enhance the diagnosis of BV in clinical settings. This method not only addresses the limitations of current diagnostic tools but also provides a more accessible and reliable option for healthcare providers, ultimately enhancing patient care and health outcomes.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.