胸腔内注射 AAV1 与脑室内注射 AAV1 在狗脑中产生的广泛转导效果相当。

IF 4.6 3区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jacqueline E Hunter, Charles H Vite, Caitlyn M Molony, Patricia A O'Donnell, John H Wolfe
{"title":"胸腔内注射 AAV1 与脑室内注射 AAV1 在狗脑中产生的广泛转导效果相当。","authors":"Jacqueline E Hunter, Charles H Vite, Caitlyn M Molony, Patricia A O'Donnell, John H Wolfe","doi":"10.1038/s41434-024-00510-9","DOIUrl":null,"url":null,"abstract":"<p><p>Widespread distribution of transduced brain cells following delivery of AAV vectors into the cerebrospinal fluid (CSF) of the cisterna magna (CM) has been demonstrated in large animal brains. In humans, intraventricular injection is preferred to intracisternal injection for CSF delivery due to the risk of brain stem injury. One study in the dog reported adverse reactions to AAV vectors expressing GFP injected into the lateral ventricle but not when injected into the CM. In contrast, AAV expressing mammalian genes in diseased animals have not triggered adverse responses since many genetic diseases also have compromised immune systems. Differences in circulation of CSF from each site could potentially affect vector spread within the brain, but a direct comparison has not been made using both a mammalian gene and immunologically normal animals. In this study we evaluated the dopamine-2-receptor (D2R) variant D2R80A, which is inactivated for intracellular signaling and has been used as a reporter gene in large animal brains. No adverse reactions to the D2R80A gene were observed from either injection route in normal dogs and both routes resulted in comparable distribution of D2R80A within the brain.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracisternal vs intraventricular injection of AAV1 result in comparable, widespread transduction of the dog brain.\",\"authors\":\"Jacqueline E Hunter, Charles H Vite, Caitlyn M Molony, Patricia A O'Donnell, John H Wolfe\",\"doi\":\"10.1038/s41434-024-00510-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Widespread distribution of transduced brain cells following delivery of AAV vectors into the cerebrospinal fluid (CSF) of the cisterna magna (CM) has been demonstrated in large animal brains. In humans, intraventricular injection is preferred to intracisternal injection for CSF delivery due to the risk of brain stem injury. One study in the dog reported adverse reactions to AAV vectors expressing GFP injected into the lateral ventricle but not when injected into the CM. In contrast, AAV expressing mammalian genes in diseased animals have not triggered adverse responses since many genetic diseases also have compromised immune systems. Differences in circulation of CSF from each site could potentially affect vector spread within the brain, but a direct comparison has not been made using both a mammalian gene and immunologically normal animals. In this study we evaluated the dopamine-2-receptor (D2R) variant D2R80A, which is inactivated for intracellular signaling and has been used as a reporter gene in large animal brains. No adverse reactions to the D2R80A gene were observed from either injection route in normal dogs and both routes resulted in comparable distribution of D2R80A within the brain.</p>\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41434-024-00510-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-024-00510-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intracisternal vs intraventricular injection of AAV1 result in comparable, widespread transduction of the dog brain.

Widespread distribution of transduced brain cells following delivery of AAV vectors into the cerebrospinal fluid (CSF) of the cisterna magna (CM) has been demonstrated in large animal brains. In humans, intraventricular injection is preferred to intracisternal injection for CSF delivery due to the risk of brain stem injury. One study in the dog reported adverse reactions to AAV vectors expressing GFP injected into the lateral ventricle but not when injected into the CM. In contrast, AAV expressing mammalian genes in diseased animals have not triggered adverse responses since many genetic diseases also have compromised immune systems. Differences in circulation of CSF from each site could potentially affect vector spread within the brain, but a direct comparison has not been made using both a mammalian gene and immunologically normal animals. In this study we evaluated the dopamine-2-receptor (D2R) variant D2R80A, which is inactivated for intracellular signaling and has been used as a reporter gene in large animal brains. No adverse reactions to the D2R80A gene were observed from either injection route in normal dogs and both routes resulted in comparable distribution of D2R80A within the brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene Therapy
Gene Therapy 医学-生化与分子生物学
CiteScore
9.70
自引率
2.00%
发文量
67
审稿时长
4-8 weeks
期刊介绍: Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信