利用锚肽 LCI 和热裂解纤维切蛋白酶的融合蛋白增强 PET 塑料的降解活性。

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yidi Liu, Zhanzhi Liu, Xuehong Guo, Ke Tong, Yueheng Niu, Zhiyu Shen, Hanzhi Weng, Fengshan Zhang, Jing Wu
{"title":"利用锚肽 LCI 和热裂解纤维切蛋白酶的融合蛋白增强 PET 塑料的降解活性。","authors":"Yidi Liu, Zhanzhi Liu, Xuehong Guo, Ke Tong, Yueheng Niu, Zhiyu Shen, Hanzhi Weng, Fengshan Zhang, Jing Wu","doi":"10.1016/j.enzmictec.2024.110562","DOIUrl":null,"url":null,"abstract":"<p><p>The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation. This study endeavors to engineer a fusion protein comprising the anchor peptide LCI, derived from Bacillus subtilis A014, and a thermally stabilized variant of Thermobifida fusca cutinase, D204C/E253C (Tfuc2), with the objective of augmenting its polyethylene terephthalate (PET) degradation efficacy. The findings demonstrate that LCI exhibits a high binding affinity for PET, and the hydrolytic efficiency of the LCI-containing fusion protein is enhanced by a factor of 1.8-34.5 compared to the free Tfuc2 enzyme. The enzymatic characteristics and molecular dynamics simulation outcomes indicate that the improved hydrolytic efficiency of PET may originate from the flexible oscillatory behavior of LCI, which exhibits a high binding affinity for PET. This study presents a novel methodology for the enzymatic degradation of PET plastic waste.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"184 ","pages":"110562"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced degradation activity of PET plastics by fusion protein of anchor peptide LCI and Thermobifida fusca cutinase.\",\"authors\":\"Yidi Liu, Zhanzhi Liu, Xuehong Guo, Ke Tong, Yueheng Niu, Zhiyu Shen, Hanzhi Weng, Fengshan Zhang, Jing Wu\",\"doi\":\"10.1016/j.enzmictec.2024.110562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation. This study endeavors to engineer a fusion protein comprising the anchor peptide LCI, derived from Bacillus subtilis A014, and a thermally stabilized variant of Thermobifida fusca cutinase, D204C/E253C (Tfuc2), with the objective of augmenting its polyethylene terephthalate (PET) degradation efficacy. The findings demonstrate that LCI exhibits a high binding affinity for PET, and the hydrolytic efficiency of the LCI-containing fusion protein is enhanced by a factor of 1.8-34.5 compared to the free Tfuc2 enzyme. The enzymatic characteristics and molecular dynamics simulation outcomes indicate that the improved hydrolytic efficiency of PET may originate from the flexible oscillatory behavior of LCI, which exhibits a high binding affinity for PET. This study presents a novel methodology for the enzymatic degradation of PET plastic waste.</p>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"184 \",\"pages\":\"110562\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.enzmictec.2024.110562\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2024.110562","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced degradation activity of PET plastics by fusion protein of anchor peptide LCI and Thermobifida fusca cutinase.

The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation. This study endeavors to engineer a fusion protein comprising the anchor peptide LCI, derived from Bacillus subtilis A014, and a thermally stabilized variant of Thermobifida fusca cutinase, D204C/E253C (Tfuc2), with the objective of augmenting its polyethylene terephthalate (PET) degradation efficacy. The findings demonstrate that LCI exhibits a high binding affinity for PET, and the hydrolytic efficiency of the LCI-containing fusion protein is enhanced by a factor of 1.8-34.5 compared to the free Tfuc2 enzyme. The enzymatic characteristics and molecular dynamics simulation outcomes indicate that the improved hydrolytic efficiency of PET may originate from the flexible oscillatory behavior of LCI, which exhibits a high binding affinity for PET. This study presents a novel methodology for the enzymatic degradation of PET plastic waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信