全面的SARS-CoV-2“劫持”知识库。

IF 13 1区 生物学 Q1 CELL BIOLOGY
Sini Huuskonen, Xiaonan Liu, Ina Pöhner, Taras Redchuk, Kari Salokas, Rickard Lundberg, Sari Maljanen, Milja Belik, Arttu Reinholm, Pekka Kolehmainen, Antti Tuhkala, Garima Tripathi, Pia Laine, Sergei Belanov, Petri Auvinen, Maria Vartiainen, Salla Keskitalo, Pamela Österlund, Larissa Laine, Antti Poso, Ilkka Julkunen, Laura Kakkola, Markku Varjosalo
{"title":"全面的SARS-CoV-2“劫持”知识库。","authors":"Sini Huuskonen, Xiaonan Liu, Ina Pöhner, Taras Redchuk, Kari Salokas, Rickard Lundberg, Sari Maljanen, Milja Belik, Arttu Reinholm, Pekka Kolehmainen, Antti Tuhkala, Garima Tripathi, Pia Laine, Sergei Belanov, Petri Auvinen, Maria Vartiainen, Salla Keskitalo, Pamela Österlund, Larissa Laine, Antti Poso, Ilkka Julkunen, Laura Kakkola, Markku Varjosalo","doi":"10.1038/s41421-024-00748-y","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"125"},"PeriodicalIF":13.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628605/pdf/","citationCount":"0","resultStr":"{\"title\":\"The comprehensive SARS-CoV-2 'hijackome' knowledge base.\",\"authors\":\"Sini Huuskonen, Xiaonan Liu, Ina Pöhner, Taras Redchuk, Kari Salokas, Rickard Lundberg, Sari Maljanen, Milja Belik, Arttu Reinholm, Pekka Kolehmainen, Antti Tuhkala, Garima Tripathi, Pia Laine, Sergei Belanov, Petri Auvinen, Maria Vartiainen, Salla Keskitalo, Pamela Österlund, Larissa Laine, Antti Poso, Ilkka Julkunen, Laura Kakkola, Markku Varjosalo\",\"doi\":\"10.1038/s41421-024-00748-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"10 1\",\"pages\":\"125\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-024-00748-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00748-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2的不断演变导致出现了几种严重影响全球健康的关注变体(VOCs)。本研究旨在研究这些挥发性有机化合物如何在蛋白质组水平上影响宿主细胞,以更好地了解疾病的机制。为了实现这一点,我们首先分析了感染α、β、δ和Omicron BA.1和BA.5变异的宿主细胞在感染后1至36小时内的(磷酸化)蛋白质组变化。我们的研究结果揭示了不同VOCs中蛋白质表达的不同时间模式,(磷)蛋白质组动力学的显着差异表明变异特异性适应。具体来说,我们观察到关键细胞通路中关键组分的表达和激活增强,如RHO GTPase周期、RNA剪接和内质网相关降解(ERAD)相关过程。我们进一步利用接近生物素化质谱(BioID-MS)研究这些VOCs的特异性突变如何影响病毒与宿主蛋白的相互作用。我们的综合相互作用组学数据集揭示了每种变体的不同相互作用概况,说明了特定突变如何改变病毒蛋白功能。总的来说,我们的广泛分析提供了每个变体的宿主细胞的详细蛋白质组学概况,为特定突变如何影响病毒蛋白功能和影响治疗靶点识别提供了有价值的见解。这些见解对于新的抗病毒物质的潜在使用和设计至关重要,旨在提高对不断演变的SARS-CoV-2变体的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The comprehensive SARS-CoV-2 'hijackome' knowledge base.

The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信